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ABSTRACT 

In the face of accelerating climate change and volatile geopolitical dynamics, securing sustainable and resilient supply chains for green 

energy storage systems has emerged as a global imperative. Lithium-ion batteries, rare earth elements, and critical minerals are 

foundational to the clean energy transition, yet their supply networks are increasingly threatened by export restrictions, resource 

nationalism, extreme weather events, and transport bottlenecks. Traditional supply chain strategies, which rely heavily on static mapping 

and retrospective risk assessments, are insufficient to address these multidimensional and fast-evolving risks. This study proposes an 

AI-optimized framework for dynamic supply chain mapping, tailored specifically for the green energy storage sector. By integrating 

satellite imagery, trade data, geopolitical risk indices, and climate hazard models, the system leverages machine learning algorithms to 

generate real-time risk scores, flag vulnerable nodes, and suggest adaptive reconfiguration pathways. The model employs graph neural 

networks and probabilistic risk modeling to simulate supply disruptions and cascading failures across multiple tiers of the supply 

network. A case simulation involving lithium supply routes in Southeast Asia and sub-Saharan Africa demonstrates the model’s ability 

to predict chokepoints, identify substitution opportunities, and recommend resilience-enhancing strategies, such as supplier 

diversification or inventory prepositioning. The findings highlight how AI can shift supply chain planning from reactive crisis 

management to proactive risk mitigation. By fusing predictive intelligence with sustainability metrics, this research contributes a 

decision-support tool that empowers energy sector stakeholders to build greener, more secure, and geopolitically aware supply chains. 

It holds particular relevance for governments, utilities, and energy storage manufacturers navigating the twin disruptions of climate 

volatility and global power realignment. 

Keywords: Green energy supply chains; AI supply chain mapping; Predictive risk modelling; Geopolitical disruption; 

Climate-resilient logistics; Energy storage systems 

1.  INTRODUCTION 

1.1 Background and Context: Energy Storage in the Green Transition  

The transition to low-carbon energy systems is fundamentally reshaping global industrial priorities, with energy storage 

technologies playing a central role in enabling decarbonization. As renewable sources like solar and wind become more 

prevalent, the need for reliable, scalable storage solutions has intensified. Lithium-ion batteries, in particular, have emerged 

as the dominant storage technology, powering everything from electric vehicles (EVs) to utility-scale storage facilities [1]. 

This growing dependence on battery systems has created new geopolitical and economic dependencies tied to the 

availability and trade of critical raw materials. 

http://www.ijrpr.com/
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Energy storage technologies rely heavily on a handful of minerals—lithium, cobalt, nickel, and rare earth elements—many 

of which are geographically concentrated and environmentally sensitive. These materials are embedded in complex global 

supply chains that span mining, refining, cell manufacturing, and final system integration [2]. The dominance of certain 

countries in mineral processing and the strategic nature of these supply chains has led to growing concern about security 

of access and economic vulnerability [3]. 

At the same time, industrial policies, such as incentives for electric mobility and renewable integration, have accelerated 

demand for batteries, pushing existing extraction and refining capacity to its limits. 

 

 Figure 1 illustrates the global distribution of lithium, cobalt, and rare earth mineral supply chains, underscoring the 

concentrated nature of these critical flows and the systemic risks associated with disruption. As the clean energy economy 

expands, building resilient, transparent, and responsive supply chain frameworks has become a foundational challenge for 

policymakers, energy firms, and sustainability advocates [4]. 

1.2 The Challenge of Supply Chain Volatility in Critical Minerals  

While the technological momentum of energy storage continues to grow, its supply chains remain fragile and susceptible 

to multidimensional risks. These vulnerabilities stem not only from material scarcity but also from geopolitical friction, 

labor disputes, export bans, environmental protests, and natural disasters that can abruptly constrain the flow of essential 

components [5]. The mining of cobalt in conflict-affected zones, for example, raises ethical and political questions, while 

the concentration of lithium processing in select nations exposes global industries to potential chokepoints [6]. 

Recent years have witnessed disruptions across all stages of the mineral supply chain—from extraction to shipping—

resulting in price volatility and delayed deployment of storage systems. Trade tensions and resource nationalism have 

further complicated supply continuity, as countries seek to control strategic resources or impose tariffs to assert leverage 

in broader geopolitical negotiations [7]. Such moves can abruptly sever supplier relationships or lead to over-reliance on 

politically aligned but operationally inefficient partners. 
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Climate-related hazards compound these risks. Floods, droughts, and extreme weather events threaten open-pit mines and 

key transport corridors, while wildfires and heatwaves impair industrial processing and port operations [8]. The global shift 

toward just-in-time manufacturing exacerbates exposure, leaving little room for corrective inventory measures when shocks 

occur. 

These compounding threats have revealed that traditional supply chain mapping tools, which rely on static inputs and 

periodic reviews, are insufficient. Instead, adaptive and predictive systems capable of anticipating multi-tier disruptions 

are required to safeguard the future of green energy storage infrastructures [9]. 

1.3 Research Objectives and Methodological Overview  

This study aims to develop and evaluate an AI-optimized framework for supply chain mapping and risk prediction in the 

context of green energy storage systems. The central objective is to design a real-time, multi-source analytics platform that 

can model disruption probabilities across critical mineral supply chains, simulate scenario responses, and guide strategic 

mitigation efforts [10]. 

The framework integrates satellite imagery, trade flow data, geopolitical risk indicators, and environmental hazard 

projections into a unified graph-based system. Machine learning models, including graph neural networks and probabilistic 

classifiers, are employed to detect vulnerabilities, predict cascading failures, and identify optimal reconfiguration paths 

when disruptions occur. Special attention is given to modeling tier-2 and tier-3 supplier risks that are often invisible in 

conventional enterprise resource planning systems [11]. 

Methodologically, the research combines technical system development with scenario-based case studies. A synthetic 

simulation of lithium and cobalt supply disruptions originating in Southeast Asia and sub-Saharan Africa is used to test the 

model’s performance. Outputs such as risk scores, delay estimates, and alternative sourcing strategies are benchmarked 

against conventional monitoring systems. 

By providing decision-makers with forward-looking intelligence, the model offers a critical tool for enhancing supply chain 

resilience, reducing emissions linked to rework, and supporting strategic autonomy in clean energy transitions [12]. 

2. MAPPING THE CURRENT LANDSCAPE OF ENERGY STORAGE SUPPLY CHAINS  

2.1 Critical Components in Green Energy Storage Systems  

Green energy storage systems are composed of a combination of electrochemical, mechanical, and digital components that 

together enable the capture, retention, and regulated discharge of electricity. Among the most commercially deployed 

technologies are lithium-ion battery systems, which power electric vehicles (EVs), grid-balancing units, and decentralized 

storage for renewables. These systems depend on a number of critical raw materials—chief among them lithium, cobalt, 

nickel, graphite, and manganese [5]. 

The anode and cathode components in lithium-ion batteries, for instance, require highly purified lithium compounds, 

synthetic or natural graphite, and, in some chemistries, a blend of cobalt and nickel. The electrolyte typically contains 

lithium salts dissolved in organic solvents, while separators are made of microporous polymers that maintain ion flow 

while preventing short circuits [6]. Additional layers of power electronics, sensors, and thermal management systems are 

used to ensure safety and performance across the battery lifecycle. 

Beyond lithium-ion, emerging storage chemistries such as solid-state batteries, sodium-ion batteries, and flow batteries 

also rely on a distinct set of rare earth elements and engineered materials. While these technologies hold promise for 

diversification, they remain heavily tied to similar critical inputs and supply chains [7]. 



International Journal of Advance Research Publication and Reviews, Vol 1, no 4, pp 63-86, December 2024                                  66
 

 

The integration of these components requires coordinated manufacturing from mining and mineral refining through cell 

fabrication, module assembly, and final system integration. At each stage, the input-output relationship is highly sensitive 

to disruption. Material purity, sourcing origin, and regulatory compliance at upstream levels can directly impact final 

system cost, safety certifications, and market eligibility, especially in transnational trade environments [8]. 

Understanding the strategic role of these components is essential to mapping supply chain fragility and developing 

responsive mitigation frameworks across regions. 

2.2 Tiered Supply Chain Structure and Key Regions  

The supply chain for green energy storage systems is organized in a tiered structure, reflecting the layered complexity of 

sourcing, processing, and system integration. At Tier 1, end-product manufacturers—such as battery pack assemblers and 

EV makers—interact with direct suppliers of cells and modules. These suppliers, in turn, depend on Tier 2 companies that 

supply components like electrodes, separators, and electrolytes. Further upstream, Tier 3 and Tier 4 suppliers encompass 

mining firms, raw material refiners, and chemical processors responsible for the extraction and conversion of lithium, 

cobalt, nickel, and other critical inputs [9]. 

This nested structure creates significant challenges for transparency and traceability. While Tier 1 suppliers are typically 

well-documented, visibility diminishes rapidly beyond Tier 2, where supplier relationships often involve subcontractors, 

toll processors, or unregistered intermediaries. The lack of clarity in these upstream tiers creates "blind spots" that are 

difficult to monitor with traditional tools [10]. 

Regionally, the global supply chain is highly concentrated. China dominates midstream processing, including more than 

60% of global lithium refining, 70% of cobalt refining, and nearly 80% of battery cell manufacturing. Australia, Chile, and 

Argentina are major sources of lithium extraction, while the Democratic Republic of the Congo (DRC) accounts for over 

70% of cobalt mining. Meanwhile, South Korea, Japan, and Germany serve as critical hubs for battery technology 

innovation and downstream integration [11]. 

Table 1: Comparative Overview of Energy Storage Supply Chain Structures by Region (2022) 

Region 

Upstream 

(Mining & 

Extraction) 

Midstream 

(Refining & 

Processing) 

Downstream 

(Battery Cell 

Manufacturing & 

Assembly) 

Key Strengths 
Key 

Vulnerabilities 

East Asia 

(China, Japan, 

South Korea) 

Moderate 

(imports from 

Africa, Australia, 

South America) 

Very Strong (global 

leader in lithium, 

cobalt, and graphite 

refining) 

Very Strong 

(dominant in battery 

cell and module 

manufacturing) 

High technical 

capacity, 

integrated value 

chains 

Dependency on 

imported raw 

materials 

Southeast Asia 

(Indonesia, 

Philippines, 

Vietnam) 

Strong (nickel, 

copper, 

emerging lithium 

in Indonesia) 

Growing 

(investment in local 

smelters and 

refineries) 

Moderate (new 

gigafactories under 

construction) 

Resource-rich, 

cost-effective 

labor 

Regulatory 

inconsistency, 

environmental 

exposure 

Sub-Saharan 

Africa (DRC, 

Zambia, 

Namibia) 

Very Strong 

(dominant in 

cobalt, copper, 

emerging 

lithium) 

Weak (limited local 

refining 

infrastructure) 

Weak (dependent on 

export for value 

addition) 

Mineral 

abundance, export 

potential 

Infrastructure gaps, 

political instability 
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Region 

Upstream 

(Mining & 

Extraction) 

Midstream 

(Refining & 

Processing) 

Downstream 

(Battery Cell 

Manufacturing & 

Assembly) 

Key Strengths 
Key 

Vulnerabilities 

South America 

(Chile, 

Argentina, 

Bolivia) 

Very Strong 

(lithium triangle, 

copper) 

Moderate (limited 

domestic refining) 

Weak (most 

materials exported 

for processing) 

Rich resource 

base, renewable 

energy integration 

Water scarcity, 

slow permitting 

processes 

North America 

(USA, Canada) 

Moderate 

(lithium, nickel, 

graphite 

exploration 

ongoing) 

Moderate 

(investment in 

domestic 

processing 

underway) 

Growing (emerging 

gigafactories) 

Policy support, 

innovation 

ecosystems 

Still reliant on 

imports, regulatory 

complexity 

Europe 

(Germany, 

France, Nordic 

countries) 

Weak (limited 

raw material 

production) 

Moderate 

(increased 

investment in 

refining 

capabilities) 

Strong (rising EV 

battery assembly and 

R&D hubs) 

Environmental 

standards, high 

automation 

High input costs, 

raw material 

dependency 

In Table 1: Comparative Overview of Energy Storage Supply Chain Structures by Region (2022), the distribution of 

capabilities across major regions is outlined, emphasizing how economic dependencies and supply monopolies shape 

global production flows. 

Given this geographic concentration and supply asymmetry, any disruption—whether political, environmental, or 

logistical—can cascade across the system and cause delays or price spikes in battery availability. This reinforces the 

urgency of designing supply networks with built-in resilience and redundancy. 

2.3 Traditional Mapping Approaches and Their Limitations  

Conventional supply chain mapping tools have largely relied on static models, enterprise resource planning (ERP) 

platforms, and periodic supplier self-reporting. These methods offer a basic snapshot of supply relationships but fall short 

in capturing real-time interdependencies, risk exposure, or dynamic behavior across global networks [12]. 

Static mapping is generally restricted to Tier 1 suppliers, omitting complex relationships at upstream tiers where many 

vulnerabilities originate. For example, while a manufacturer may have direct oversight of its module supplier, it often lacks 

visibility into where that supplier sources its lithium carbonate or cobalt sulfate. As a result, procurement teams are 

frequently unaware of their exposure to unstable jurisdictions or at-risk logistics corridors [13]. 

Traditional mapping also lacks integration with external risk data. While suppliers may be vetted for financial stability or 

compliance, these assessments do not typically account for geopolitical instability, extreme weather events, or commodity 

price fluctuations—factors that increasingly drive disruption. The absence of real-time data analytics means these systems 

are reactive rather than predictive, leading to slow response times and suboptimal mitigation [14]. 

Moreover, supply chain transparency platforms tend to operate in silos. Customs, trade, satellite, and shipping data are not 

automatically reconciled with internal procurement databases, making it difficult to develop holistic, synchronized risk 
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assessments. Even when digital tools are deployed, they often lack graph-based architectures capable of modeling 

cascading failures or identifying non-obvious vulnerabilities across interconnected suppliers [15]. 

Given the mounting pressures on green energy supply chains—ranging from mineral nationalism to climate-induced 

disruptions—traditional mapping tools no longer suffice. The need for AI-augmented, real-time, and multi-tier supply chain 

visibility has become not only strategic but existential for stakeholders in the clean energy transition. 

3. GEOPOLITICAL AND CLIMATE DISRUPTIONS IN GREEN ENERGY LOGISTICS  

3.1 Geopolitical Shocks: Trade Wars, Sanctions, and Resource Nationalism  

Geopolitical volatility has emerged as one of the most disruptive forces in the global supply chain for green energy storage 

systems. Trade wars, export controls, and resource nationalism have become strategic instruments used by states to secure 

economic advantage or apply pressure on rival powers [11]. These interventions have directly affected the flow of critical 

minerals such as lithium, cobalt, and rare earth elements, which are essential to battery technologies. 

For instance, tariff escalations between major economies have impeded the smooth transit of energy storage components, 

increasing costs and complicating logistics. Sanctions targeting specific firms or countries involved in mineral extraction 

and refining have further constrained access, particularly when financial institutions are prohibited from processing 

transactions linked to sanctioned entities [12]. The ripple effects are felt across the entire value chain, from upstream mining 

operations to downstream integration in electric vehicle and grid storage manufacturing. 

Resource nationalism has also intensified, with several governments imposing restrictions on the export of unprocessed 

minerals to encourage local value addition. While such policies may bolster domestic industries, they often disrupt existing 

supply contracts and introduce uncertainty into global procurement strategies [13]. Countries with dominant positions in 

refining or reserves have leveraged their influence to dictate terms or negotiate preferential access agreements, exacerbating 

inequalities in supply availability. 

 

Figure 2 Risk Hotspot Map Linking Geopolitical Tensions and Climate Vulnerability 
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Compounding this, geopolitical tensions frequently intersect with legal and regulatory changes, including revisions to 

mining permits, environmental clearances, and foreign investment rules. These shifts introduce sudden delays or 

compliance burdens for international operators [14]. Figure 2 illustrates how areas with high mineral endowment also 

overlap with regions of elevated geopolitical tension and climate risk, underscoring the multidimensional vulnerability of 

these supply routes. 

Without predictive monitoring systems that can anticipate such shocks, companies and governments remain exposed to 

strategic disruptions with broad implications for energy security [15]. 

3.2 Climate Change-Induced Disruptions: Floods, Droughts, and Wildfires  

Climate change is increasingly acting as a destabilizing force across mineral supply chains. As green technologies scale, 

the irony lies in their reliance on raw materials sourced from regions highly vulnerable to environmental disruption. Floods, 

droughts, wildfires, and heatwaves now regularly threaten extraction sites, processing facilities, and transport routes critical 

to battery production [16]. 

In lithium-rich areas such as the salt flats of South America, water-intensive extraction methods are becoming harder to 

sustain due to prolonged droughts and declining groundwater levels. In parallel, heavy rainfall and flooding in African 

mining belts have delayed cobalt and copper shipments, damaging access roads and increasing transit times [17]. These 

events are no longer isolated incidents but recurring hazards that challenge year-round supply consistency. 

Wildfires, fueled by rising global temperatures, have also impacted processing hubs and logistics infrastructure in regions 

like Australia, California, and southern Europe. Fires compromise worker safety, lead to plant shutdowns, and destroy 

inventory stockpiles, creating bottlenecks downstream in the supply chain [18]. Moreover, heatwaves threaten the 

operational efficiency of smelting and refining plants that depend on temperature-sensitive processes and stable power 

supplies. 

The transport sector, often overlooked in resilience planning, is also at risk. Rising sea levels and storm surges threaten 

low-lying port infrastructure, while rail and road networks in heat-prone zones face thermal distortion and material fatigue. 

These vulnerabilities compound over time, especially where redundancy or alternative routing is limited [19]. 

Current climate risk assessments remain disconnected from supply chain models, limiting the visibility of environmental 

threats. Integrating real-time weather intelligence and long-range climate forecasts into supply chain monitoring systems 

can offer early warning for potential disruptions and inform proactive rerouting or sourcing decisions [20]. 

3.3 Interdependency and Cascading Failures in Global Networks  

The global supply chain for green energy storage systems operates as an intricate web of interdependencies, where failure 

in one node or region can cascade across the entire network. Unlike linear models of production, modern supply chains 

involve cross-border flows of intermediate goods, shared logistics providers, and time-sensitive coordination between 

multiple tiers of suppliers [21]. A disruption at any point—whether from geopolitical or environmental sources—can 

initiate a chain reaction affecting lead times, costs, and final product availability. 

For instance, a political blockade in one port region may delay lithium shipments, which then interrupts cathode production 

in another country, causing downstream delays in battery pack assembly and vehicle delivery schedules [22]. These 

disruptions multiply in systems with limited buffer inventories or centralized sourcing strategies, increasing systemic 

fragility. 

Compounding the issue is the opacity of Tier 3 and Tier 4 suppliers, where digital visibility is often minimal. A single 

under-documented subcontractor failure can remain undetected until it manifests as a production bottleneck weeks later. 

Moreover, overlapping supplier bases across competitors can create industry-wide constraints when a key processing plant 

or transport node is compromised [23]. 
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Without dynamic models to simulate network effects and visualize alternate supply paths, most firms continue to rely on 

reactive crisis management. The adoption of graph-based AI systems offers an opportunity to map these dependencies in 

real time and simulate the knock-on effects of potential shocks. These tools enable decision-makers to move from single-

point disruption tracking to system-wide risk modeling—essential for maintaining supply chain continuity in a volatile 

global landscape [24]. 

4. ROLE OF AI IN MODERN SUPPLY CHAIN RISK ANALYSIS  

4.1 Overview of AI Applications in Supply Chain Optimization  

Artificial intelligence (AI) has rapidly transformed the landscape of supply chain management by offering advanced 

capabilities in forecasting, optimization, and anomaly detection. In green energy storage systems, where materials are 

geographically dispersed and vulnerable to disruption, AI enables a shift from reactive to proactive supply chain 

control [15]. Rather than relying on static spreadsheets or historical averages, AI systems leverage real-time data to identify 

bottlenecks, optimize inventory flows, and simulate contingency scenarios. 

A core application is in demand forecasting, where machine learning models analyze historical sales, macroeconomic 

indicators, and seasonal patterns to predict future material requirements. This allows firms to balance production planning 

with upstream procurement, reducing overstocking and shortages [16]. Additionally, AI is used in route optimization, 

helping logistics networks adapt to port delays, climate disruptions, or political instability by recalculating paths based on 

live inputs. 

Another key use case lies in supplier risk assessment. AI systems can track supplier behavior, monitor financial signals, 

and evaluate compliance metrics to rank suppliers based on reliability. These tools enhance supplier diversification 

strategies and flag risks before they escalate [17]. AI is also being embedded into contract automation and pricing 

intelligence systems that automatically renegotiate procurement deals in response to market changes. 

Crucially, AI enhances visibility into multi-tier supply chains. Graph algorithms and clustering tools identify hidden 

dependencies or fraud risks, particularly within Tier 3 or Tier 4 suppliers where transparency is weakest. This ability to 

map entire supplier ecosystems, rather than just direct vendors, creates an unprecedented level of intelligence and 

preparedness in high-stakes sectors like green energy [18]. 

These AI applications form the digital backbone for more resilient and adaptive supply chain architectures amid 

geopolitical and environmental uncertainty. 

4.2 Data Sources: Integrating Satellite, Sensor, and Trade Intelligence  

The accuracy and utility of AI-driven supply chain optimization depend fundamentally on the diversity and quality of data 

inputs. In the case of green energy storage systems, integrating heterogeneous data sources allows predictive models to 

contextualize risk and produce actionable insights in real time. Key inputs include satellite imagery, sensor networks, and 

global trade intelligence, each contributing unique visibility into material flows and environmental risk factors [19]. 

Satellite data provides overhead monitoring of mining sites, processing hubs, and key transportation nodes. For instance, 

changes in surface reflectance or vegetation indices can indicate illegal mining activity or sudden environmental 

degradation around lithium salt flats. Satellite feeds can also monitor vessel activity in strategic ports and detect weather 

anomalies likely to disrupt shipping lanes [20]. 

IoT and sensor-based monitoring adds granularity at the ground level. Sensors installed in shipping containers, railway 

hubs, or storage depots measure temperature, humidity, vibration, and transit duration. These data streams help ensure 

material integrity and flag emerging threats such as spoilage, tampering, or delays. In remote regions, such as cobalt mines 
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in Central Africa, mobile-based sensor kits are increasingly used to feed data into centralized platforms for health, safety, 

and productivity monitoring [21]. 

Trade intelligence platforms aggregate import-export data, customs records, and regulatory filings from global ports and 

tax authorities. These systems detect unusual trade patterns, rerouting, or stockpiling behavior that may indicate strategic 

hoarding, supply shortages, or policy shifts. Harmonizing this data with internal procurement systems allows companies 

to track material flows not just in their own chains but across entire industry sectors [22]. 

When unified, these data sources create a multidimensional view of supply chain activity. This composite visibility enables 

more responsive, ethical, and secure decision-making across complex international energy storage networks [23]. 

4.3 Predictive Modeling Techniques: Machine Learning, GNNs, and Simulation  

The integration of advanced modeling techniques is key to unlocking the full potential of AI in supply chain forecasting 

and disruption management. Among the most effective tools are machine learning algorithms, graph neural networks 

(GNNs), and agent-based simulations, which together support both real-time alerts and long-term scenario planning [24]. 

Supervised machine learning models—such as random forests, support vector machines, and gradient boosting—are 

trained on historical supply chain data to predict risk scores, lead time variability, and supplier performance. These models 

excel in structured environments where labeled datasets are available, such as past shipping delays or contract violations. 

They are particularly useful in demand forecasting, inventory optimization, and delay classification [25]. 

Unsupervised learning techniques like k-means clustering or DBSCAN help identify novel patterns or emerging risks in 

unlabeled data. For instance, clustering transaction anomalies can detect fraud or smuggling in export declarations. 

Principal Component Analysis (PCA) is used for dimensionality reduction to simplify multivariate risk data without losing 

critical signal [26]. 

Graph Neural Networks (GNNs) represent a breakthrough in modeling interconnected supplier relationships. GNNs can 

capture both the attributes of each node (e.g., supplier profile) and the structural dynamics of the network (e.g., supply 

paths, shared dependencies). This is essential for predicting cascading effects of a disruption and visualizing alternate 

routing scenarios [27]. 

Agent-based simulations complement machine learning by modeling the behavior of autonomous agents (e.g., shipping 

companies, customs officers, suppliers) under various scenarios. These simulations provide what-if analysis capabilities, 

enabling decision-makers to assess the impact of a port closure, a climate disaster, or a sanctions event on end-to-end 

supply continuity [28]. 

Table 2: AI Tools and Algorithms Commonly Used in Supply Chain Forecasting 

AI Tool / Algorithm Primary Function Use Case in Supply Chains Strengths 

Random Forest 
Supervised Classification & 

Regression 

Demand forecasting, supplier risk 

scoring 

High accuracy, handles 

nonlinear data well 

Support Vector 

Machine (SVM) 

Binary & Multi-class 

Classification 

Fraud detection, shipment delay 

prediction 

Effective in high-

dimensional spaces 

XGBoost / Gradient 

Boosting 
Ensemble Learning 

Disruption probability modeling, 

inventory optimization 
Fast, robust to overfitting 
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AI Tool / Algorithm Primary Function Use Case in Supply Chains Strengths 

Graph Neural 

Networks (GNNs) 

Relationship-based 

Learning 

Mapping tiered supplier risk, 

cascading failure prediction 

Models complex network 

dependencies 

DBSCAN / K-Means 

Clustering 
Unsupervised Clustering 

Grouping similar suppliers, 

detecting anomalous behavior 
No prior labeling needed 

PCA (Principal 

Component Analysis) 
Dimensionality Reduction 

Simplifying complex multivariate 

datasets for modeling 

Improves model 

performance and 

interpretability 

Bayesian Networks 
Probabilistic Inference & 

Uncertainty Modeling 

Predicting cascading delays under 

uncertain conditions 
Strong for what-if analysis 

Monte Carlo 

Simulation 

Scenario Testing with 

Random Sampling 

Stress testing supply chain 

resilience 

Quantifies likelihood across 

scenarios 

Federated Learning 
Collaborative Model 

Training 

Cross-company or cross-border 

model training without data 

sharing 

Enhances privacy, enables 

distributed intelligence 

LSTM / Recurrent 

Neural Networks 
Time Series Forecasting 

Forecasting demand or shipment 

lead times over time 

Captures sequential patterns 

in data 

It provides an overview of these methodologies, highlighting their use cases and data dependencies. When orchestrated 

together, these tools equip energy supply chains with predictive intelligence and strategic foresight. 

5. PROPOSED AI-DRIVEN PREDICTIVE RISK MODELING FRAMEWORK  

5.1 System Architecture and Functional Components  

The proposed AI-optimized risk mapping framework for energy storage supply chains is designed as a modular, cloud-

native architecture that supports real-time risk scoring, scalable data ingestion, and simulation-based decision support. Its 

core components include a data ingestion layer, AI analytics engine, risk scoring module, graph database infrastructure, 

and a decision interface for human analysts [19]. 

The data ingestion layer collects inputs from diverse sources—satellite imagery, customs databases, trade filings, IoT 

sensor data, and climate monitoring systems. These inputs are normalized and routed to a staging environment where 

automated pipelines transform raw data into structured formats compatible with modeling tasks [20]. 

At the heart of the system is the AI analytics engine, which runs both supervised and unsupervised machine learning 

models, including clustering, anomaly detection, and time-series forecasting. This engine also integrates graph neural 

networks to model supplier interdependencies and simulate cascading effects [21]. All computations are containerized 

using Kubernetes or similar orchestration tools to ensure elasticity and microservice modularity. 
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The risk scoring module synthesizes analytical outputs to generate risk metrics at various levels—by supplier, commodity, 

region, or transport corridor. These metrics are visualized in dashboards and fed into alert systems that flag urgent threats 

to procurement teams in real time [22]. 

A graph database, such as Neo4j, underpins the model’s ability to visualize and query supply chain nodes and their 

interconnections. Unlike relational databases, graph structures allow dynamic mapping of many-to-many relationships 

critical to understanding global logistics complexity. 

 

Figure 3: Architecture Diagram of the AI-Optimized Risk Mapping Framework to show the interaction between layers and 

data flows. 

Finally, a decision support interface allows end-users to explore scenario outputs, overlay risk scores on global maps, 

and simulate alternative routes or sourcing strategies. This comprehensive architecture bridges the gap between risk 

awareness and operational readiness [23]. 

5.2 Real-Time Risk Scoring: Threat Detection and Probabilistic Modeling  

Central to the AI risk mapping framework is its real-time risk scoring engine, which aggregates and evaluates incoming 

data streams to predict the likelihood, severity, and potential impact of supply chain disruptions. This capability allows for 

proactive mitigation in lieu of the traditionally reactive posture prevalent in critical mineral procurement systems [24]. 

The scoring engine utilizes a layered decision logic that combines rule-based filtering, statistical probability estimation, 

and machine learning classification. Initially, raw inputs—such as port congestion alerts, trade sanction updates, or drought 

warnings—are passed through a rules engine trained on historical disruption triggers. If a flag is raised, the input proceeds 

to the modeling layer for deeper analysis [25]. 

Supervised models trained on past disruption cases assign probability values to the likelihood of events (e.g., shipment 

delays, material shortages) and their expected duration. These models use features such as weather anomalies, transaction 
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volume shifts, and customs wait times to detect subtle indicators of systemic risk [26]. Unsupervised anomaly detection 

complements this by identifying outliers in current trade behavior that may indicate early-stage disruptions or fraud. 

The system leverages Bayesian models and Monte Carlo simulations to generate probabilistic forecasts under 

uncertainty. For instance, if a key lithium-exporting region shows an increasing drought index, the model simulates how 

reduced output could affect midstream processors and estimates time-to-failure under different demand growth 

scenarios [27]. These results are translated into dynamic risk scores, ranging from low to critical, and updated continuously 

as new data arrives. 

Risk scores are geospatially anchored and presented on an interactive global map, allowing decision-makers to visually 

interpret hotspots and interlinked vulnerabilities. Alerts are tiered based on impact thresholds and integrated with 

procurement platforms for automated response workflows [28]. 

This real-time scoring capability enhances agility, reduces response lag, and transforms how supply chain risks are 

quantified and acted upon in the green energy sector [29]. 

5.3 Integration with Supply Chain Digital Twins and Decision Support  

To enhance the operational utility of the AI risk mapping model, the system is integrated with supply chain digital twins—

virtual replicas of the physical supply network that update continuously based on real-world data. These digital twins enable 

decision-makers to simulate the effects of potential disruptions, test alternative configurations, and optimize mitigation 

strategies without affecting ongoing operations [30]. 

The integration begins by ingesting supply chain structure data—supplier locations, production capacity, transit routes, and 

lead times—into a graph database. This forms the structural basis of the digital twin, which is synchronized in real time 

with IoT feeds, trade records, and climate models. By pairing this with the AI risk engine, users can visualize the 

propagation of disruptions from point of origin through to final product delivery [31]. 

In a typical scenario, if a geopolitical shock emerges—such as a mineral export ban or port blockade—the digital twin 

instantly reflects the change and projects its downstream effects. The AI system calculates expected delays, identifies 

vulnerable nodes, and offers alternative configurations such as rerouting shipments or activating secondary suppliers [32]. 

Advanced simulation features allow for stress-testing under multiple risk conditions, including simultaneous climate and 

political disruptions. For example, users can model the combined impact of a flood in a transit corridor and a labor strike 

at a cobalt refinery, with outputs that show cumulative delay, revenue loss, and alternative fulfillment options [33]. This 

empowers planners to not only respond faster but also design contingencies in advance. 

The decision support interface presents simulation results in dashboards tailored for procurement, logistics, and risk 

officers. Key performance indicators (KPIs) such as material availability, risk-adjusted cost, and carbon intensity are 

computed for each scenario, aligning operational responses with strategic sustainability goals [34]. 

By linking the AI model with digital twins, supply chain managers gain a predictive, immersive environment where threats 

can be anticipated, actions evaluated, and resilience continuously refined. This fusion of analytics and simulation marks a 

paradigm shift in how green energy systems are safeguarded against uncertainty and disruption [35]. 

6. CASE STUDY: LITHIUM SUPPLY CHAIN VULNERABILITY SIMULATION  

6.1 Region Focus: Southeast Asia and Sub-Saharan Africa  

Southeast Asia and Sub-Saharan Africa represent two of the most strategically significant yet operationally vulnerable 

regions in the global energy storage supply chain. These areas are primary sources of critical minerals—lithium, cobalt, 
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and manganese—that serve as the foundation for battery manufacturing. Yet, both regions face overlapping risks including 

weak infrastructure, regulatory volatility, and exposure to climate extremes [23]. 

In Southeast Asia, Indonesia has emerged as a major supplier of nickel, with growing downstream investments in smelting 

and battery precursor production. However, its mineral export controls and evolving environmental regulations introduce 

supply-side uncertainty [24]. Similarly, Myanmar’s mining zones remain integral to the rare earth and tin markets but are 

affected by intermittent political instability and armed conflict that can disrupt extraction and cross-border trade routes. 

Sub-Saharan Africa, particularly the Democratic Republic of the Congo (DRC), dominates global cobalt mining. While 

the DRC holds strategic resource advantage, its supply chain suffers from underdeveloped transport infrastructure, high 

operational risk, and concerns related to artisanal mining and labor practices [25]. Meanwhile, Zambia and Namibia are 

gaining traction as lithium producers, but remain early in the investment curve. 

These regions are often connected to global markets via limited chokepoints—such as the Port of Dar es Salaam, Maputo, 

or Singapore—creating dependencies that are difficult to mitigate without alternative corridors. Mapping their full supply 

chain involvement, from extraction to maritime handoff, reveals a high degree of interdependency and exposure to single-

node failures. 

This simulation focuses on disruptions originating in these zones, testing how environmental and political shocks influence 

lead times, risk scores, and the availability of substitute suppliers within a digitally twinned logistics environment [26]. 

6.2 Scenario Modeling: Political Unrest and Cyclone Impacts  

To test the responsiveness of the AI risk modeling framework, two distinct but plausible disruption scenarios were 

developed using historical and climatological datasets: a case of political unrest in the DRC and a Category 4 cyclone 

making landfall in coastal Indonesia. These scenarios were run independently and jointly to assess compounding risk 

effects on energy storage supply chains. 

Scenario A: Political Unrest in the DRC. 

Triggered by a sudden escalation in regional protests near cobalt extraction zones, this simulation incorporates mobility 

restrictions, curfews, and road blockades that reduce output by 45% over a six-week period. Real-time inputs include 

satellite data showing a drop in truck movement from mining centers to port hubs, social media indicators, and shipping 

manifest declines from Matadi and Boma ports [27]. 

The AI engine classifies this disruption as high-risk, assigning a probability-adjusted lead time delay of 18–26 days. 

Upstream effects include raw material stockouts at Southeast Asian refineries and reduced availability of cobalt sulfates 

for cathode producers in South Korea. The digital twin identifies alternate supply from Zambia, but logistics cost 

projections show a 32% increase due to extended routing via Walvis Bay. 

Scenario B: Cyclone in Indonesia. 

A powerful cyclone disrupts extraction and port operations across Sulawesi and Kalimantan, halting nickel shipments and 

flooding three major transport arteries. Satellite precipitation data, port closure notices, and sensor feeds from stalled cargo 

flows feed into the AI model. The simulation predicts a disruption window of 12–16 days, with risk scores escalating in 

dependent downstream facilities in China and India [28]. 

Combined Scenario (A + B). 

When both events are triggered simultaneously, the model projects supply chain congestion, increased transit times, and 

an estimated global battery production shortfall of 9.3% over the quarter. Compounding effects extend through three supply 

tiers, with the digital twin identifying risk propagation into unrelated suppliers due to shared sub-tier dependencies [29]. 
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Table 3: Simulation Outputs — Delay Time, Substitution Feasibility, Risk Scores 

Scenario 
Material 

Affected 

Disruption 

Type 

Estimated 

Delay 

(Days) 

Risk 

Score 

(0–1) 

Substitution 

Feasibility 

Cost Impact of 

Substitution 

Carbon 

Intensity 

Impact (%) 

Scenario A: 

Political Unrest 

in DRC 

Cobalt 

Civil Unrest & 

Mobility 

Blockade 

18–26 0.83 
Moderate 

(Zambia) 
+22% to +32% +14% 

Scenario B: 

Cyclone in 

Indonesia 

Nickel 

Natural 

Disaster 

(Cyclone) 

12–16 0.74 
High (Vietnam, 

Philippines) 
+9% to +13% +7% 

Combined 

Scenario (A + 

B) 

Cobalt, 

Nickel 

Compound 

Disruption 
26–38 0.91 

Low for Cobalt; 

Moderate for 

Nickel 

+25% to +38% +17% 

6.3 Results: Predicted Chokepoints, Delays, and Alternative Pathways  

Simulation results underscore the value of AI-augmented modeling for proactive supply chain resilience. Each scenario 

revealed specific chokepoints, delay forecasts, and viable mitigation strategies, which are captured in Table 3: Simulation 

Outputs — Delay Time, Substitution Feasibility, Risk Scores. 

In Scenario A, the political unrest in the DRC elevated the disruption risk score for cobalt by 0.83 on a 0–1 scale, triggering 

alerts across procurement platforms. Estimated shipment delays ranged from 18 to 26 days, depending on customer 

geography and mode of transport. The model’s alternate path suggestion—switching to Zambian suppliers and rerouting 

through Namibia—was feasible but came with a 22–32% cost increase and limited capacity for scale. Importantly, Tier 2 

suppliers in East Asia were flagged for secondary delay risk due to their reliance on affected refiners [30]. 

Scenario B showed a more concentrated but shorter-term disruption. The AI system assigned a risk score of 0.74 to nickel 

exports from Indonesia, with estimated delays of 12–16 days. The digital twin successfully re-routed a subset of shipments 

via the Philippines and Vietnam, mitigating some impacts. However, certain cathode producers that lacked multi-source 

contracts faced cascading shortages, underscoring the strategic need for contractual diversification and pre-positioned 

inventory buffers [31]. 

In the combined scenario, system-wide effects became evident. Average lead times across both mineral classes extended 

by 31%, and the risk scores triggered contingency procurement protocols in major OEM systems. The simulation showed 

that over 70% of the downstream delays were linked not to direct suppliers, but to Tier 3 nodes—highlighting the 

importance of deep-tier visibility in modern supply chain design [32]. 

The model also computed carbon impact estimates for alternative routes, showing that rerouting via longer maritime paths 

increased carbon intensity by 17%. These metrics informed sustainability-adjusted mitigation planning, balancing 

emissions targets with resilience needs. 

These results validate the framework’s capability to inform timely, data-driven action across complex global supply 

networks. 

7. BUILDING RESILIENT AND ADAPTIVE SUPPLY CHAINS  
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7.1 Strategies for Mitigation: Diversification, Onshoring, and Redundancy  

As geopolitical and environmental disruptions increasingly destabilize energy storage supply chains, firms and 

governments are turning to structural risk mitigation strategies. The three most prominent among these are supplier 

diversification, selective onshoring, and strategic redundancy, each offering distinct benefits when employed in 

tandem [27]. 

Supplier diversification involves sourcing critical materials from multiple vendors across different geographies. This 

approach reduces dependency on any single region, mitigating the impact of local shocks such as political unrest or natural 

disasters. For instance, blending cobalt sources from the Democratic Republic of the Congo with those from Zambia or 

Indonesia can help balance price volatility and shipment reliability [28]. However, diversification must be actively 

managed—logistics complexity, regulatory compliance, and traceability challenges increase with the number of suppliers. 

Onshoring, or near-shoring, is gaining traction for midstream processing and component assembly. Countries with 

established industrial bases are incentivizing domestic battery material refinement and cathode production to minimize 

external exposure. While onshoring cannot eliminate all dependencies—raw material extraction often remains offshore—

it shortens the supply chain, enhances visibility, and supports workforce development [29]. 

Redundancy entails maintaining backup suppliers, alternative transport corridors, and safety stock to absorb shocks. This 

strategy traditionally faced resistance due to its capital intensity, but advances in predictive analytics allow firms to 

optimize redundancy by allocating buffers only where risk concentration is highest. AI models help dynamically identify 

“single points of failure” and recommend where dual-sourcing or inventory buildup can yield the highest return on 

resilience [30]. 

 

Figure 4: Risk Mitigation Flowchart for Green Energy Supply Networks, illustrating how these three strategies interlock 

within a dynamic mitigation framework. 
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When implemented collectively, these strategies transform linear supply chains into adaptive networks that are better 

equipped to absorb and recover from multi-tier disruptions. 

7.2 Leveraging Predictive Intelligence for Contingency Planning  

Predictive intelligence has emerged as a cornerstone of modern supply chain resilience, enabling energy storage 

manufacturers and governments to anticipate and preempt disruption through data-driven insights. Rather than relying 

solely on reactive audits or historical lag indicators, predictive models generate foresight by continuously scanning for 

emergent risks across geographies and time horizons [31]. 

At the heart of predictive contingency planning is scenario simulation. Using AI tools like graph neural networks and 

Bayesian classifiers, supply chain nodes can be modeled as interconnected ecosystems whose risk exposure is updated in 

real time. This allows planners to simulate disruptions—such as port closures, labor strikes, or commodity export bans—

and visualize their cascading effects on material availability and delivery timelines [32]. 

For instance, if rainfall patterns in lithium-producing regions drop below seasonal thresholds, predictive models can 

forecast drying pond inefficiencies weeks in advance. This early signal allows firms to initiate procurement from secondary 

markets before price spikes, avoiding emergency restocking that typically comes at higher cost and environmental 

burden [33]. 

Predictive intelligence also supports inventory stratification—allocating critical material reserves not evenly, but based on 

AI-generated risk profiles. Facilities most exposed to disruption receive a higher buffer, while low-risk zones operate 

leaner. This optimizes working capital while preserving operational continuity. 

In global contexts, predictive systems assist in regulatory foresight. Models trained on historical policy shifts and political 

rhetoric can flag emerging trade restrictions or environmental compliance hurdles, allowing stakeholders to adjust contracts 

or investment flows proactively [34]. 

The ability to integrate satellite, customs, and environmental data into one predictive dashboard provides unmatched 

visibility. It equips decision-makers with actionable intelligence, reducing lead times in risk response and improving long-

term supply chain planning outcomes across the green energy sector. 

7.3 Policy Recommendations for Public-Private Collaboration  

While technological innovation enables predictive insights and structural resilience, policy frameworks play a critical role 

in operationalizing supply chain security at scale. Governments, development banks, and private sector actors must 

coordinate on shared standards, investment incentives, and data governance protocols to safeguard energy storage supply 

chains [35]. 

One key recommendation is the development of national risk registries for critical minerals. These platforms would catalog 

real-time data on supplier reliability, transport bottlenecks, and geopolitical exposure, accessible to both public and private 

entities. Shared intelligence reduces duplication and improves alignment in response strategies [36]. 

Governments should also consider expanding public-private funding programs for onshoring and diversification efforts. 

Subsidies, tax credits, and concessional loans can reduce capital barriers for small and mid-sized enterprises seeking to 

localize processing or forge alternative supplier partnerships. Industrial policy can be paired with export financing tools 

that encourage sustainable, ethical sourcing across lower-income mineral-producing regions [37]. 

Regulatory harmonization is equally vital. Variability in customs classifications, ESG reporting standards, and data-sharing 

laws hampers the ability to build interoperable digital twins and simulation engines. Bilateral agreements and multilateral 

forums should prioritize standardized taxonomies and API protocols to enable real-time risk exchange between 

jurisdictions. 
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Finally, policy frameworks must uphold data sovereignty and ethical AI principles. Transparent model auditing, 

algorithmic bias safeguards, and robust privacy protocols are essential for maintaining public trust in predictive systems 

that monitor critical infrastructure. 

When governance mechanisms align with AI capabilities, the result is a robust foundation for resilient, future-ready green 

energy supply networks. 

8. ETHICAL, ENVIRONMENTAL, AND DATA GOVERNANCE IMPLICATIONS  

8.1 AI Ethics in Predictive Decision-Making  

As AI systems become integral to supply chain forecasting and operational decision-making, it is imperative to consider 

the ethical implications of algorithm-driven judgments—especially in the context of green energy storage, where decisions 

may affect cross-border trade, labor practices, and environmental justice. Predictive risk engines, when left unchecked, can 

amplify existing inequalities by reinforcing data biases or triggering preemptive decisions that disproportionately impact 

resource-dependent regions. 

For instance, if an AI model flags a supplier based in a politically unstable region as “high-risk” based solely on historical 

patterns, this could lead to unjust exclusion from global markets, despite improvements on the ground. Such outcomes 

raise concerns about algorithmic fairness and accountability. To mitigate this, risk scoring mechanisms must be 

accompanied by explainable AI (XAI) modules that provide human-readable reasoning for automated decisions. 

Furthermore, ethical AI deployment requires active oversight. This includes establishing governance boards within 

organizations, deploying model audit protocols, and engaging external stakeholders in the review of automated 

frameworks. Transparent scoring logic and redress mechanisms for suppliers affected by algorithmic decisions are essential 

to uphold fairness and prevent opaque, discriminatory practices. Ultimately, ethical alignment must be embedded not just 

in model development, but across the full lifecycle of AI system deployment. 

8.2 Environmental Impacts of Mining and Algorithmic Resource Allocation  

Although energy storage systems are a cornerstone of the green transition, the upstream processes involved—particularly 

mineral extraction and processing—carry significant environmental burdens. Lithium mining, for example, is water-

intensive and can lead to ecosystem degradation, especially in arid regions. Similarly, cobalt and nickel extraction often 

occurs in biodiversity-rich areas where mining has been linked to deforestation, soil toxicity, and hazardous waste disposal. 

When AI systems are used to optimize procurement and sourcing, they risk prioritizing efficiency over environmental 

sensitivity unless explicitly trained to consider ecological parameters. If cost and delivery time are the dominant features 

in the risk model, suppliers with poor environmental records may still be recommended due to logistical advantages or 

financial pricing. Therefore, environmental indicators—such as land-use intensity, emissions profiles, or ecological 

sensitivity indices—must be embedded into the AI’s feature architecture to ensure alignment with sustainability goals. 

Furthermore, the use of AI in supply chains introduces indirect environmental concerns such as computational emissions. 

The training and deployment of large-scale models consume significant computing power, particularly in cloud-based 

environments. Organizations must evaluate the carbon footprint of their digital infrastructure and consider energy-efficient 

algorithms and data centers powered by renewables. 

Incorporating lifecycle environmental assessments and sustainable procurement standards into AI frameworks ensures that 

resource allocation models do not undermine the very climate objectives they aim to support. 

8.3 Data Privacy and Cross-Border Intelligence Sharing  
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Global supply chain visibility depends on the seamless integration of customs data, satellite feeds, trade declarations, and 

IoT sensor outputs. While this data fusion enables powerful predictive capabilities, it also raises critical concerns around 

data governance, ownership, and privacy—especially when data traverses jurisdictions with varying legal and ethical 

standards. 

For example, customs data shared across multinational platforms may include sensitive commercial information that, if 

mishandled, could expose firms to industrial espionage or competitive disadvantage. Additionally, real-time location data 

from logistics providers or IoT devices can inadvertently reveal proprietary operational patterns or security vulnerabilities. 

Safeguarding this information requires end-to-end encryption, role-based access controls, and robust audit trails to track 

who accesses what and when. 

At the regulatory level, varying national data protection regimes—such as the General Data Protection Regulation (GDPR) 

in Europe or localized data localization laws in Asia and Africa—pose interoperability challenges. AI systems must be 

designed with modular compliance layers that ensure legal alignment with the strictest applicable standards. Data 

anonymization, synthetic data modeling, and privacy-preserving techniques like federated learning can allow for cross-

border analytics without compromising legal boundaries. 

Beyond legal compliance, ethical data stewardship is essential. Companies must adopt data minimization principles, collect 

only what is necessary, and regularly reassess consent policies and data retention schedules. Public trust in AI-enabled 

supply chains will only be sustained if the systems that support them are transparent, legally compliant, and designed to 

protect sensitive commercial and individual information. 

9. GLOBAL OUTLOOK AND FRAMEWORK FOR INTERNATIONAL COOPERATION  

9.1 The Role of Multilateral Institutions and Regional Alliances  

Multilateral institutions and regional alliances have a pivotal role to play in advancing resilient, transparent, and secure 

supply chains for green energy storage systems. As the demand for lithium, cobalt, nickel, and rare earth elements 

intensifies, these organizations are uniquely positioned to convene stakeholders, harmonize standards, and reduce systemic 

risk through coordinated interventions [30]. 

The International Renewable Energy Agency (IRENA) and World Bank have already taken steps toward convening 

platforms that promote clean energy mineral transparency, including tracking investment flows and facilitating South-

South cooperation on ethical extraction. These efforts must be expanded to include real-time disruption intelligence and 

AI-assisted forecasting tools that inform cross-border risk response [31]. 

Regional blocs—such as the African Continental Free Trade Area (AfCFTA), the European Union (EU), and the 

Association of Southeast Asian Nations (ASEAN)—can serve as operational hubs for supply chain coordination [33]. 

These entities are better positioned than individual states to develop shared logistics corridors, pooled mineral reserves, 

and integrated customs protocols that reduce border friction and vulnerability to localized shocks [32]. 

Joint investment funds under institutions like the Asian Development Bank (ADB) or African Export-Import Bank 

(Afreximbank) can catalyze infrastructure modernization in mining and transport hubs, enabling higher resilience against 

both climate and geopolitical disruptions. Moreover, regional alliances can mediate fair value distribution across the supply 

chain, ensuring that mineral-rich countries are not marginalized in the green energy transition [34]. 

To enable coordinated action, multilateral bodies must expand their roles from policy advisory to data integration and risk 

governance, offering digital platforms and shared frameworks that align forecasting tools, supplier assessments, and 

strategic stockpiling across borders [35]. These institutions are essential to making resilience a global public good. 

9.2 Designing Interoperable AI Systems for Shared Supply Intelligence  



International Journal of Advance Research Publication and Reviews, Vol 1, no 4, pp 63-86, December 2024                                  81
 

 

To facilitate real-time, cross-border coordination, AI systems used for supply chain monitoring must be interoperable—

capable of exchanging, processing, and interpreting data across countries, institutions, and platforms. Interoperability is 

essential not only for technical alignment but also for strategic coherence in responding to transnational disruptions [36]. 

A foundational requirement is the adoption of common data standards. Systems across customs, logistics, and procurement 

agencies must converge on shared taxonomies for commodity codes, risk classifications, and ESG metrics. This enables 

disparate AI platforms to ingest and analyze data without manual reconciliation or translation errors [37]. Existing protocols 

such as the OECD’s Taxonomy for Responsible Mineral Supply Chains or the UN/CEFACT standards for electronic trade 

can serve as templates for broader adoption. 

Moreover, AI models should be designed using modular and open-source frameworks where appropriate, allowing 

stakeholders to adapt algorithms to local regulatory environments while preserving global compatibility. Federated learning 

architectures, for instance, allow models to be trained on decentralized datasets across different countries without exposing 

sensitive information, enhancing both privacy and scalability [38]. 

Effective interoperability also requires the creation of cross-border digital infrastructure, such as shared simulation 

environments and cloud-hosted decision support platforms. These tools enable governments and firms to test mitigation 

strategies collaboratively and simulate multi-country disruption scenarios in real time [39]. 

 

Figure 5: Scalable Global Governance Framework for AI-Enabled Supply Chain Risk  Coordination, outlining technical, 

institutional, and legal layers of AI collaboration. 

Finally, interoperability must be governed by clear data sovereignty agreements, ensuring that international intelligence-

sharing does not compromise national interests or cybersecurity standards. Trust frameworks and joint certification 

programs will be essential in balancing openness with resilience [40]. 

9.3 Toward Global Taxonomy of Resilient Energy Supply Chains  
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A major gap in current supply chain resilience efforts is the absence of a globally accepted taxonomy for critical energy 

storage systems. While individual countries and companies maintain their own classification systems, a standardized 

framework is needed to facilitate transparency, comparison, and harmonized action across the international landscape [41]. 

Such a taxonomy would classify not only materials—such as lithium hydroxide, cobalt sulfate, and nickel matte—but also 

nodes of vulnerability, tiers of suppliers, environmental risk zones, and resilience indicators. This would allow for 

coordinated auditing, benchmarking, and policy alignment across governments and private actors [42]. 

Importantly, the taxonomy must include resilience metrics: lead time elasticity, supplier redundancy scores, climate 

adaptation capacity, and carbon-adjusted delivery indexes. These metrics create a shared language for evaluating trade-

offs in sourcing, enabling both commercial negotiation and regulatory intervention based on risk exposure rather than just 

cost or volume [43]. 

Establishing this taxonomy will require collaboration between standard-setting bodies, academic researchers, and industry 

consortia. Institutions such as the International Electrotechnical Commission (IEC) and the Global Battery Alliance (GBA) 

are well-placed to facilitate consensus-building [44]. 

The taxonomy should be digitally native, integrated into AI systems and digital twins, and compatible with predictive 

analytics engines to enable automated classification and risk tagging [45]. Over time, it will evolve into a cornerstone of 

sustainable and secure energy system governance—supporting not just monitoring but real-time, equitable decision-making 

across an increasingly interconnected world [46]. 

10. CONCLUSION AND FUTURE RESEARCH DIRECTIONS  

10.1 Summary of Key Contributions and System Capabilities  

This study has introduced and demonstrated a comprehensive, AI-optimized risk mapping framework tailored for the 

complex, multi-tier supply chains that support green energy storage systems. In an era defined by rising geopolitical 

instability and accelerating climate events, traditional linear and static supply chain models are no longer sufficient. Instead, 

what is needed is a predictive, dynamic, and resilient approach that enables energy transition stakeholders to anticipate 

disruptions, model responses, and act preemptively. 

The proposed system integrates diverse data streams—including satellite imagery, trade intelligence, climate data, and IoT 

sensor inputs—into a graph-based architecture that captures supplier interdependencies and vulnerability propagation. 

Machine learning models are employed not only for anomaly detection and real-time risk scoring, but also for probabilistic 

forecasting and scenario simulation. This multi-layered capability equips users to detect emerging threats, quantify lead-

time impacts, and identify optimal rerouting or sourcing alternatives before disruptions escalate. 

Key contributions include the integration of AI with digital twin technology, allowing for immersive simulation of political 

and environmental scenarios that affect upstream mining, midstream processing, and downstream manufacturing nodes. 

Case studies focused on Southeast Asia and Sub-Saharan Africa showcased the framework’s ability to quantify delay time, 

substitution feasibility, and resilience trade-offs in high-risk regions. 

The system also aligns with broader strategic goals, enabling sustainable decision-making by incorporating carbon intensity 

metrics, ESG profiles, and ethical sourcing considerations. The inclusion of real-time dashboards and API-based decision 

support tools ensures operational integration with existing enterprise resource planning and procurement systems. 

In summary, this work provides a scalable blueprint for data-driven supply chain governance in the green energy sector. It 

bridges the gap between tactical logistics visibility and strategic foresight, allowing public and private actors to transform 

fragmented, risk-prone networks into adaptive, future-ready ecosystems. 
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10.2 Future Research in Hybrid Models and Unstructured Risk Detection  

While the current framework provides robust capabilities for structured data analysis and real-time scenario planning, 

several areas remain open for further exploration and enhancement. One of the most promising frontiers lies in the 

development of hybrid modeling techniques—approaches that combine deterministic logic, probabilistic simulation, and 

deep learning within a single cohesive architecture. Such models would allow systems to learn from historical disruptions 

while also incorporating explicit expert rules and contextual variables that are not easily inferred from data alone. 

Another important direction involves the integration of unstructured data sources into the AI risk pipeline. News articles, 

social media feeds, policy memos, and satellite text annotations often contain early signals of emerging disruptions that 

structured data systems may overlook. Natural language processing (NLP) and multimodal AI can be leveraged to mine 

these sources for sentiment shifts, unrest indicators, and linguistic markers of regulatory change. Combining structured 

supply chain indicators with unstructured narrative intelligence would result in a significantly more responsive system. 

There is also a need to enhance model transparency through explainable AI (XAI) tools that allow stakeholders—including 

governments and citizens—to understand how disruption forecasts are generated. Transparent scoring and attribution 

methods will be especially critical as these systems are embedded into decision-making at scale. 

Lastly, research into collaborative and federated learning architectures will enable multinational entities to train predictive 

models jointly without compromising proprietary data, fostering trust and interoperability across jurisdictions. 

Together, these research pathways will deepen the analytical and ethical foundations for global supply chain resilience in 

the green energy transition. 
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