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ABSTRACT 

We gave and implemented a Bayesian estimation procedure for the log-normal survival distribution without covariates, under censored 

circumstance. This survival distribution in question is one among many available for solving problems in the statistical field of survival 

analysis, and may be considered under uncensored or censored circumstances (with or without covariates). Perusal and scrutiny of a host 

of contemporary literature unraveled the presence of only a few studies which suggested the need for adopting the Bayesian alternative 

procedure, whilst considering the peculiar cases of a log-normal survival distribution; hence, exposing the gap warranting this study. To 

this end, we adopted the Bayesian estimation procedure for estimating the parameters of the log-normal survival distribution, and 

consequently deduced the mean and variance of the survival time. Our results showed that one could obtain the parameter estimates of 

𝜇 and 𝜎, via maximum likelihood estimation, as well as Bayesian estimation procedures under censored circumstance. Our results, more 

so, confirmed that 𝜇 and 𝜎 existed for both the MLE and Bayesian procedures under censored circumstance, particularly at (𝑢, 𝑣) =
(0, 1) being a standard normal instance of our prior used for the simulation done in the study. However, our results confirmed the non-

existence of  𝜇𝑇 and 𝜎𝑇
2 for both the MLE and Bayesian procedures under censored circumstances. 

Keywords: Log-normal Survival Distribution, Censored Circumstance, Bayesian Estimation, Normal Informative Prior. 

1.  INTRODUCTION 

1.1 Background of the study 

Survival analysis, as a branch of statistics, is one that estimates the expected duration of time until one, or more, occurrences 

(like: the death in biological organisms, or the failure in mechanical systems) take place [2; 6; 8]. This tool called “survival 

analysis” has now been applied, in contemporary times, to studies in various fields such as: clinical sciences, engineering, 

and industry, implying that its applications in most real-life scenarios is unquestionable [1; 5; 9]. 

Although engineers aim to estimate the time which is available until a machine fails, in the field of engineering, clinical 

scientists are often concerned with estimating the time available until ailments reoccur, or until an accident victims dies 

from injuries, or until an individual succumbs to a terminal illness, etc. [4; 5; 7] Sadly, in making such estimations, these 

non-survival analysts may depend on previous ideas absent the knowledge of survival analysis [9; 10], whereas in such an 

instance, survival analysis should have been a preferred technique for making non-intuitive estimations, with high precision 

[5; 11; 16]. 

During the early years of the 20th century, survival analysts developed survival distributions in survival analysis studies. 

These distributions are themselves statistical distributions that were only specifically redesigned to cater for the needs of 

survival analysis. These needs majorly comprise obtaining the survivorship functions and hazard functions [10; 12; 16]. 
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However, since developing survival analysis in the early years of the 20th century, about six statistical distributions, namely: 

the exponential, Weibull, log-normal, gamma, generalized gamma, and log-logistic distributions, have been redesigned for 

use in survival analysis studies, with what is known as the “exponential survival distribution” being the most popular 

amongst the lot [3; 6]. Notwithstanding, the log-normal survival distribution has also been extensively utilized owing to its 

efficiency and reliability in modelling times to failure [3; 7; 13]. 

Log-normal survival distributions are a type of survival distributions that are redesigned from the log-normal statistical 

distribution as it were, but having minor interpretational variations [3; 12; 14]. In comparison with the log-normal statistical 

distribution, the log-normal survival distribution can be utilized to deduce the hazard and survivorship functions. Overtime, 

for all survival distributions, as well as the log-normal survival distribution in particular, all parameters have been estimated 

through the maximum likelihood estimation (MLE) procedure; no doubt, this has produced formidable results [4; 10; 13]. 

Regardless, in this article, we have attempted the adoption of a Bayesian estimation alternative, as tendencies are that this 

could produce stronger theoretical and applied results. 

1.2 Statement of the problem 

The method of maximum likelihood estimation – MLE is often used for estimating the parameters of survival distributions, 

in survival analysis. Until the recent adoption of the Bayesian technique in survival analysis studies, MLE had remained 

the only estimation approach. Regardless, from sufficient review of available literature on survival distributions, a majority 

of researchers who have investigated this matter have approached it usually disregarding the nature and sensitivity of the 

survival distributions whose parameters they intend to estimate. For instance, concerns about how the parameters of the 

distributions should be estimated under censored circumstances seem not be considered at all. [15] was one (among several) 

attempts to surmount this pitfall, using a reference Bayesian approach for the estimating the parameters of the generalized 

log-normal distribution in the presence of survival data. Notwithstanding, their study did not consider the cases of censored 

observations. Addressing the gap using the log-normal survival distribution with an informative prior is, thus, the interest 

of this study. 

1.3 Aim and objectives of the study 

This study adopted a Bayesian approach to estimating parameters of the log-normal survival distribution without covariates 

(under censored circumstance) with applications. In order to achieve the stated aim, the objectives of the study were to: (i) 

review the MLE procedure for estimating the parameters of the log-normal survival distribution, (ii) formulate the Bayesian 

estimation alternative to the MLE procedure, and (iii) establish any necessary theorem and axiom based on findings.  

2.  MATERIALS AND METHODS  

2.1 General maximum likelihood estimation procedure 

2.1.1 Estimation procedures for data with right-censored observations 

Suppose that 𝑛 persons were followed to their deaths or censored in a study. Let 𝑡1, 𝑡2, … , 𝑡𝑟,  𝑡𝑟+1
+ , 𝑡𝑟+2

+ , … , 𝑡𝑛
+ be the 

survival times observed from the 𝑛 individuals, with 𝑟 exact times and (𝑛 − 𝑟) right-censored times. Assume that the 

survival times follow a distribution with the density function 𝑓(𝑡, 𝒃) and survivorship function 𝑆(𝑡, 𝒃), where 𝒃 =

(𝑏1, … , 𝑏𝑝) denotes unknown 𝑝 parameters 𝑏1, … , 𝑏𝑝 in the distribution. If the survival time is discrete (i.e., it is observed 

at discrete time only), 𝑓(𝑡, 𝒃) represents the probability of observing 𝑡 and 𝑆(𝑡, 𝒃) represents the probability that the 

survival or event time is greater than 𝑡. In other words, 𝑓(𝑡, 𝒃) and 𝑆(𝑡, 𝒃) represent the information that can be obtained 

respectively from an observed uncensored survival time and observed right-censored survival time. Thus, the product 

∏ 𝑓(𝑡𝑖 ,  𝒃)𝑛
𝑖=1  represents the joint probability of observing the uncensored survival times, and ∏ 𝑆(𝑡𝑖

+,  𝒃)𝑛
𝑖=𝑟+1  represents 

the joint probability of those right-censored survival times. The product of these two probabilities, denoted by 𝐿(𝒃), 

𝐿(𝒃) = ∏ 𝑓(𝑡𝑖 ,  𝒃)

𝑛

𝑖=1

∏ 𝑆(𝑡𝑖
+,  𝒃)

𝑛

𝑖=𝑟+1

 

represents the joint probability of observing 𝑡1, 𝑡2, … , 𝑡𝑟, 𝑡𝑟+1
+ , 𝑡𝑟+2

+ , … , 𝑡𝑛
+. A similar interpretation applies to continuous 

survival 𝐿(𝒃) is called the likelihood function of 𝒃, which can also be interpreted as a measure of the likelihood of observing 

a specific set of survival times 𝑡1, 𝑡2, … , 𝑡𝑟, 𝑡𝑟+1
+ , 𝑡𝑟+2

+ , … , 𝑡𝑛
+, given a specific set of parameters 𝒃. The method of the MLE 

is to find an estimator of 𝒃 that maximizes 𝐿(𝒃), or in other words, which is “most likely” to have produced the observed 

data 𝑡1, 𝑡2, … , 𝑡𝑟, 𝑡𝑟+1
+ , 𝑡𝑟+2

+ , … , 𝑡𝑛
+. Take the logarithm of 𝐿(𝒃) and denote it by 𝑙(𝒃), 
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𝑙(𝒃) = 𝑙𝑜𝑔 𝐿 (𝒃) = ∑𝑙𝑜𝑔[𝑓(𝑡𝑖, 𝒃)]

𝒓

𝒊=𝟏

+ ∑ 𝑙𝑜𝑔[𝑆(𝑡𝑖
+, 𝒃)]

𝒓

𝒊=𝒓+𝟏

                           (1) 

Then the MLE 𝒃̂ is a 𝒃 is the set of 𝑏̂1, 𝑏̂2, … , 𝑏̂𝑝 that maximizes 𝑙(𝒃): 

𝑙(𝒃̂) = 𝑚𝑎𝑥
𝑎𝑙𝑙𝑏

(𝑙(𝒃)) 

It is clear that 𝒃̂ is a solution of the following simultaneous equations, which are obtained by taking the derivative of 𝑙(𝒃) 

with respect to each 𝑏𝑗: 

𝜕𝑙(𝒃)

𝜕𝑏𝑗

= 0   𝑗 = 1,2, … , 𝑝                                                      (2) 

To obtain the MLE 𝒃̂, one can use a numerical method. A commonly used numerical method is the Newton-Raphson 

iterative procedure, which can be summarized as follows. 

i. Let the initial values 𝑏1, … , 𝑏𝑝 be zero; that is, let 

𝒃(0) = 0 

ii. The changes for 𝒃 at each subsequent step, denoted by Δ
(𝑗), is obtained by taking the second derivative of 

the log-likelihood function: 

Δ
(𝑗) = [−

𝜕2𝑙(𝒃(𝑗−1))

𝜕𝒃𝜕𝒃′
]

−1
𝜕𝑙(𝒃(𝑗−1))

𝜕𝒃
                                              (3) 

iii. Using Δ
(𝑗), the value of 𝒃(𝑗) at 𝑗𝑡ℎ step is 

𝒃(𝑗) = 𝒃(𝑗−1) + Δ
(𝑗)  𝑗 = 1,2,3, … 

The iteration terminates at, say, the 𝑚𝑡ℎ step if ‖Δ
(𝑚)‖ < 𝛿, where 𝛿 is a given precision, usually a very small value, 10−4 

or 10−5. Then the MLE 𝒃̂ is defined as 

𝒃̂ = 𝒃(𝑚−1)                                                                    (4) 

The estimated covariance matrix of the MLE 𝒃̂ is given by 

𝑣𝑎𝑟
𝛬

(𝒃̂) = 𝑐𝑜𝑣
𝛬

(𝒃̂) = [−
𝜕2𝑙(𝒃̂)

𝜕𝒃𝜕𝒃′
]

−1

                                                    (5) 

One of the good properties of a MLE is that if 𝒃̂ is the MLE of 𝒃, then 𝑔(𝒃̂) is the MLE of 𝑔(𝒃) if 𝑔(𝒃) is a finite function 

and need not be one-to-one. 

The estimated 100(1 − 𝛼)% confidence interval for any parameter 𝑏𝑖 is 

(𝒃̂𝒊 − 𝒁𝜶 𝟐⁄ √𝒗𝒊𝒊𝒃̂𝒊 + 𝒁𝜶 𝟐⁄ √𝒗𝒊𝒊)                                                               (6) 

where 𝑣𝑖𝑖  is the 𝑖𝑡ℎ diagonal element of 𝑉̂(𝒃̂) and 𝑍𝛼 2⁄  is the 100(1 − 𝛼 2⁄ ) percentile point of the standard normal 

distribution [𝑃(𝑍 > 𝑍𝛼 2⁄ ) = 𝛼 2⁄ ]. For a finite function 𝑔(𝑏𝑖) of 𝑏𝑖, the estimated 100(1 − 𝛼)% confidence interval for 

𝑔(𝒃𝒊) is its respective range 𝑅 on the confidence interval in equation (6), that is, 

𝑅 = {𝑔(𝒃𝒊): 𝒃𝒊 ∈ (𝒃̂𝒊 − 𝒁𝜶 𝟐⁄ √𝒗𝒊𝒊𝒃̂𝒊 + 𝒁𝜶 𝟐⁄ √𝒗𝒊𝒊)}                                             (7) 

In case 𝑔(𝑏𝑖) is monotone in 𝑏𝑖, the estimated 100(1 − 𝛼)% confidence interval for 𝑔(𝑏𝑖) is 
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𝑅 = {𝑔(𝒃̂𝒊 − 𝒁𝜶 𝟐⁄ √𝒗𝒊𝒊),  𝑔(𝒃̂𝒊 + 𝒁𝜶 𝟐⁄ √𝒗𝒊𝒊)}                                                   (8) 

2.1.2 Estimation procedures for data with right-, left-, and interval-censored observations 

If the survival times 𝑡1, 𝑡2, … , 𝑡𝑛 observed for the 𝑛 persons consist of uncensored left-, right-, and interval-censored 

observations, the estimation procedures are similar. Assume that the survival times follow a distribution with the density 

function 𝑓(𝑡, 𝒃) and the survivorship function 𝑆(𝑡, 𝒃), where 𝒃 denotes all unknown parameters of the distribution. Then 

the log-likelihood function is 

𝑙(𝒃) = 𝑙𝑜𝑔 𝐿 (𝒃) = ∑ 𝑙𝑜𝑔[𝑓(𝑡𝑖, 𝒃)] + ∑𝑙𝑜𝑔[𝑆(𝑡𝑖, 𝒃)]

  + ∑𝑙𝑜𝑔[1 − 𝑆(𝑡𝑖 , 𝒃)] + ∑ 𝑙𝑜𝑔[𝑆(𝑣𝑖 , 𝒃) − 𝑆(𝑡𝑖 , 𝒃)]
}                                   (9) 

where the first sum is over the uncensored observations, the second sum over the right-censored observations, the third 

sum over the left-censored observations, and the last sum over the interval-censored observations, with 𝑣𝑖 as the lower end 

of a censoring interval. The other steps for obtaining the MLE 𝒃̂ of 𝒃 are similar to the steps shown in section (2.1.1) by 

substituting the log-likelihood function defined in equation (1) with the log-likelihood function in equation (9). 

2.2 Log-normal distribution 

If the survival time 𝑇 follows the log-normal distribution with density function given by equation (10), then the mean and 

the variance are respectively 𝑒𝑥𝑝 (𝜇 +
1

2
𝜎2) and [𝑒𝑥𝑝(𝜎2) − 1]𝑒𝑥𝑝(2𝜇 + 𝜎2). 

𝑓(𝑡) =
1

𝑡𝜎√2𝜋
𝑒𝑥𝑝 [−

1

2𝜎2
(𝑙𝑜𝑔𝑡 − 𝜇)2]                                                                                (10) 

Estimation of the two parameters 𝜇 and 𝜎2 has been investigated either by using equation (10) directly or by using the fact 

that 𝑌 = log 𝑇 follows the normal distribution with mean 𝜇 and variance 𝜎2. 

2.2.1 Estimation of 𝜇 and 𝜎2 for data without censored observations 

Estimations of 𝜇 and 𝜎2 for complete samples by maximum likelihood methods have been studied by many authors. But 

the simplest way to obtain estimates of 𝜇 and 𝜎2 with optimum properties is by considering the distribution of 𝑌 = log 𝑇. 

Let 𝑡1, 𝑡2, 𝑡3, … , 𝑡𝑛 be the survival times of 𝑛 subsets. The MLE of 𝜇 is the sample mean of 𝑌 given by: 

𝜇̂ =
1

𝑛
∑𝑙𝑜𝑔𝑡𝑖

𝑛

𝑖=1

                                                                                                                             (11) 

The MLE of 𝜎2 is 

𝜎̂2 =
1

𝑛
[∑(𝑙𝑜𝑔𝑡𝑖)

2

𝑛

𝑖=1

−
(∑ 𝑙𝑜𝑔𝑡𝑖

𝑛
𝑖=1 )2

𝑛
]                                                                                   (12) 

The estimate 𝜇̂ is also unbiased but 𝜎̂2 is not. The best unbiased estimates of 𝜇 and 𝜎2 are 𝜇̂ and the sample variance 𝑠2 =
𝜎̂2[𝑛 (𝑛 − 1)⁄ ]. If 𝑛 is moderately large, the difference between 𝑠2 and 𝜎̂2 is negligible. 

One of the properties of the MLE is that if 𝜃̂ is the MLE of 𝜃, 𝑔(𝜃̂) is the MLE of 𝑔(𝜃) if 𝑔(𝜃) is a finite function. 

Therefore, the MLEs of the mean and variance of 𝑇 are, respectively, 𝑒𝑥𝑝 (𝜇̂ +
1

2
𝜎̂2) and [𝑒𝑥𝑝(𝜎̂2) − 1]𝑒𝑥𝑝(2𝜇̂ + 𝜎̂2). 

It is known that 𝜇̂ = 𝑦̂ is normally distributed with mean 𝜇 and variance 𝜎2 𝑛⁄ . Hence, if 𝜎 is known, a 100(1 − 𝛼)% 

confidence interval for 𝜇 is 𝜇̂ ± 𝑍𝛼 2⁄ 𝜎 √𝑛⁄ . If 𝜎 is unknown, we can use Student’s 𝑡-distribution. A 100(1 − 𝛼)% 

confidence interval for 𝜇 is 𝜇̂ ± 𝑡𝛼 2⁄ ,(𝑛−1) 𝑠 √𝑛 − 1⁄ , where 𝑡𝛼 2⁄ ,(𝑛−1) is the 100𝛼 2⁄  percentage point of Student’s 𝑡-

distribution with 𝑛 − 1 degrees of freedom. 
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Confidence intervals for 𝜎2 can be obtained by using the fact that 𝑛𝜎̂ 𝜎2⁄  has a chi-square distribution with 𝑛 − 1 degrees 

of freedom. A 100(1 − 𝛼)% confidence interval for 𝜎2 is 

𝑛𝜎̂2

𝜒(𝑛−1),𝛼 2⁄
2 < 𝜎2 <

𝑛𝜎̂2

𝜒(𝑛−1),1−𝛼 2⁄
2                                                                                                               (13) 

2.2.2 Estimation of 𝜇 and 𝜎2 for data with censored observations 

We first consider samples with singly censored observations. The data consist of 𝑟 exact survival times 𝑡(1) ≤ 𝑡(2) ≤ ⋯ ≤

𝑡(𝑟) and 𝑛 − 𝑟 right-censored survival times that are at least 𝑡(𝑟) denoted by 𝑡(𝑟)
+ . Furthermore, we use the fact that 𝑌 =

𝑙𝑜𝑔𝑇 has normal distribution with mean 𝜇 and variance 𝜎2. Estimates of 𝜇 and 𝜎2 can be obtained from the transformed 

data 𝑦𝑖 = 𝑙𝑜𝑔𝑡𝑖. Many authors have investigated the estimation of 𝜇 and 𝜎2. 

The best linear estimates of 𝜇 and 𝜎2 proposed by Saharan and Greeberg are linear combinations of the logarithms of the 

𝑟 exact survival times: 

𝜇̂ = ∑𝑎𝑖𝑙𝑜𝑔𝑡(𝑖)

𝑟

𝑖=1

                                                                                                                          (14) 

𝜎̂ = ∑ 𝑏𝑖𝑙𝑜𝑔𝑡(𝑖)

𝑟

𝑖=1

                                                                                                                          (15) 

where the coefficients 𝑎𝑖 and 𝑏𝑖 are calculated and tabulated by Saharan and Greeberg for 𝑛 ≤ 20. 

MLEs for the log-normal distribution can be used for 𝑛 > 20. Let 

𝑦̅ =
1

𝑟
∑𝑙𝑜𝑔𝑡(𝑖)

𝑟

𝑖=1

                                                                                                                          (16) 

and 

𝑠2 =
1

𝑟
[∑(𝑙𝑜𝑔𝑡(𝑖))

2
−

(∑ 𝑙𝑜𝑔𝑡(𝑖))
2

𝑟
]                                                                                    (17) 

Then the MLEs of 𝜇 and 𝜎2 are 

𝜇̂ = 𝑦̅ − 𝜆̂(𝑦̅ − 𝑙𝑜𝑔𝑡(𝑟))                                                                                                              (18) 

and 

𝜎̂2 = 𝑠2 + 𝜆̂(𝑦̅ − 𝑙𝑜𝑔𝑡(𝑟))
2
                                                                                                        (19) 

where the value of 𝜆̂ has been tabulated by Cohen in 1961 as a function of 𝑎 and 𝑏. The proportion of censored observations, 

𝑏, is calculated as 

𝑏 =
𝑛 − 𝑟

𝑛
 

and 

𝑎 =
1 − 𝑌(𝑌 − 𝑐)

(𝑌 − 𝑐)2
 

where 𝑌 = [𝑏 (1 − 𝑏)⁄ ]𝑓(𝑐) 𝐹(𝑐)⁄ , 𝑓(𝑐) and 𝐹(𝑐) being the density and distribution functions, respectively, of the 
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standard normal distribution, evaluated at: 

𝑐 = (𝑙𝑜𝑔𝑡(𝑟) − 𝜇) 𝜎⁄  

2.3 The Bayesian estimation procedure 

Let 𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑛 be a random sample from the density 𝑓(𝑥; 𝜃). Before taking the sample, the distribution of 𝜃, 𝑔(𝜃) is 

assumed known. Hence, 𝑔(𝜃) is called a prior distribution. The task is to know the distribution 𝑓(𝜃|𝑥), after taking the 

sample. Hence, 𝑓(𝜃|𝑥) is called a posterior distribution. 

Let us consider the conditional distribution 

𝑓(𝑥|𝜃) =
𝑓(𝑥; 𝜃)

𝑔(𝜃)
 

⇒ 𝑓(𝑥; 𝜃) = 𝑓(𝑥|𝜃)𝑔(𝜃)                                                          (20) 

⇒ 𝑓(𝜃|𝑥) =
𝑓(𝑥; 𝜃)

ℎ(𝑥)
                                                           (21) 

Substituting for equation (20) in equation (21) gives, 

⇒ 𝑓(𝜃|𝑥) =
𝑓(𝑥|𝜃)𝑔(𝜃)

ℎ(𝑥)
                                                         (22) 

But ∫ 𝑓(𝜃|𝑥)
𝛺

𝑑𝜃 = 1 

Therefore, 

∫𝑓(𝜃|𝑥)
𝛺

𝑑𝜃 = ∫
𝑓(𝑥|𝜃)𝑔(𝜃)

ℎ(𝑥)𝛺

𝑑𝜃 = 1 

⇒ 1 =
1

ℎ(𝑥)
∫𝑓(𝑥|𝜃)𝑔(𝜃)
𝛺

𝑑𝜃 

⇒ ℎ(𝑥) = ∫𝑓(𝑥|𝜃)𝑔(𝜃)
𝛺

𝑑𝜃                                                    (23) 

Putting equation (23) into equation (22) gives 

⇒ 𝑓(𝜃|𝑥) =
𝑓(𝑥|𝜃)𝑔(𝜃)

∫ 𝑓(𝑥|𝜃)𝑔(𝜃)𝑑𝜃
𝛺

                                                   (24) 

Since we are taking a random sample of this distribution 

𝑓(𝑥|𝜃) = 𝐿(𝑥|𝜃) = ∏𝑓(𝑥𝑖|𝜃)

𝑛

𝑖=1

 

Hence, equation (24) becomes: 

⇒ 𝑓(𝜃|𝑥) =
𝐿(𝑥|𝜃)𝑔(𝜃)

∫ 𝐿(𝑥|𝜃)𝑔(𝜃)𝑑𝜃
𝛺

                                                   (25) 

The above equation (25) gives 𝑓(𝜃|𝑥) as the posterior Bayes distribution with respect to the prior distribution 𝑔(𝜃). 

Hence, 
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𝐸[𝜏(𝜃)] = ∫𝜏(𝜃)𝑓(𝜃|𝑥)𝑑𝜃
𝛺

                                                    (26) 

is called the posterior Bayes estimator with respect to the prior distribution 𝑔(𝜃); where 𝜏(𝜃) is any function of 𝜃. 

2.4 Proposed procedure of the study 

The proposed Bayesian alternative will be implemented with the procedure below. 

Step 1: Determine an appropriate prior 𝜋(𝜇). 

The appropriate prior for the log-normal distribution is a normal distribution of 𝜇 with mean 𝑢 and 𝑣2. That is, 

𝜋(𝜇) =
1

𝑣√2𝜋
𝑒𝑥𝑝 [−

1

2𝑣2
(𝜇 − 𝑢)2] 

Step 2: Obtain the Bayesian estimates of 𝜇 and 𝜎2 for data with censored observations. 

Step 2(a): Deduce the mean remission time in this instance. 

Step 2(b): Deduce the variance of the remission time in this instance. 

3.  RESULTS 

3.1 Theorem 1 (censored case of log-normal survival distribution) 

Suppose that a random sample of size 𝑛 is drawn from a log-normal distribution with unknown mean 𝜇 and known variance 

𝜎2. Also, suppose that the prior distribution of 𝜇 is also log-normal with mean 𝑢 and variance 𝑣2. Then the posterior 

distribution of 𝜇 is also log-normal, with mean and variance given by: 

𝜇̂ =
𝑢𝜎2 + 𝑣2 ∑ 𝑙𝑜𝑔𝑡𝑖

𝑛
𝑖=1 + 𝑣2 ∑ 𝑙𝑜𝑔𝑡𝑖

+𝑛
𝑖=𝑟+1

𝜎2 + 𝑛𝑣2
;           𝜎̂2 =

𝜎2𝑣2

𝜎2 + 𝑛𝑣2
 

Proof 1: 

𝜋(𝜇|𝑡) =
𝑓(𝑡|𝜇)𝜋(𝜇)

∫ 𝑓(𝑡|𝜇)𝜋(𝜇)𝑑𝜇
∞

−∞

 

𝜋(𝜇|𝑡) ∝ 𝑓(𝑡|𝜇)𝜋(𝜇) 

The likelihood function is given by: 

∏ 𝑓(𝑡|𝜇)

𝑛

𝑖=1

= ∏ {
1

𝑡𝑖𝜎√2𝜋
𝑒

−
1

2𝜎2(𝑙𝑜𝑔𝑡𝑖−𝜇)2
}

𝑟

𝑖=1

∏ {
1

𝑡𝑖
+𝜎√2𝜋

𝑒
−

1

2𝜎2(𝑙𝑜𝑔𝑡𝑖
+−𝜇)

2

}

𝑛

𝑖=𝑟+1
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=
1

∏ 𝑡𝑖
𝑟
𝑖=1 𝜎𝑟(2𝜋)

𝑟

2

𝑒
−

1

2𝜎2 ∑ (𝑙𝑜𝑔𝑡𝑖−𝜇)2𝑟
𝑖=1

1

∏ 𝑡𝑖
+𝑛

𝑖=𝑟+1 𝜎𝑛−𝑟(2𝜋)
𝑛−𝑟

2

𝑒
−

1

2𝜎2 ∑ (𝑙𝑜𝑔𝑡𝑖
+−𝜇)

2𝑛
𝑖=𝑟+1  

=
1

∏ 𝑡𝑖
𝑟
𝑖=1 𝜎𝑟(2𝜋)

𝑟

2

1

∏ 𝑡𝑖
+𝑛

𝑖=𝑟+1 𝜎𝑛−𝑟(2𝜋)
𝑛−𝑟

2

𝑒
−

1

2𝜎2 ∑ (𝑙𝑜𝑔𝑡𝑖−𝜇)2𝑟
𝑖=1 𝑒

−
1

2𝜎2 ∑ (𝑙𝑜𝑔𝑡𝑖
+−𝜇)

2𝑛
𝑖=𝑟+1  

=
1

[∏ 𝑡𝑖
𝑟
𝑖=1 𝜎𝑟(2𝜋)

𝑟

2] [∏ 𝑡𝑖
+𝑛

𝑖=𝑟+1 𝜎𝑛−𝑟(2𝜋)
𝑛−𝑟

2 ]
𝑒

−
1

2𝜎2 ∑ (𝑙𝑜𝑔𝑡𝑖−𝜇)2𝑟
𝑖=1 −

1

2𝜎2 ∑ (𝑙𝑜𝑔𝑡𝑖
+−𝜇)

2𝑛
𝑖=𝑟+1  

=
1

∏ 𝑡𝑖
𝑟
𝑖=1 ∏ 𝑡𝑖

+𝑛
𝑖=𝑟+1 𝜎𝑛(2𝜋)

𝑛

2

𝑒
−

1

2𝜎2[∑ (𝑙𝑜𝑔𝑡𝑖−𝜇)2𝑟
𝑖=1 +∑ (𝑙𝑜𝑔𝑡𝑖

+−𝜇)
2𝑛

𝑖=𝑟+1 ]
 

The prior distribution of 𝜇 is given by: 

𝜋(𝜇) =
1

𝑣√2𝜋
𝑒𝑥𝑝 [−

1

2𝑣2
(𝜇 − 𝑢)2] 

The posterior distribution is: 

𝜋(𝜇|𝑡) ∝ 𝑒𝑥𝑝 [−
1

2𝜎2
[∑(𝑙𝑜𝑔𝑡𝑖 − 𝜇)2

𝑟

𝑖=1

+ ∑ (𝑙𝑜𝑔𝑡𝑖
+ − 𝜇)2

𝑛

𝑖=𝑟+1

] −
(𝜇 − 𝑢)2

2𝑣2
] 

𝜋(𝜇|𝑡) ∝ 𝑒𝑥𝑝 [−
1

2
[
∑ (𝑙𝑜𝑔𝑡𝑖 − 𝜇)2𝑟

𝑖=1 + ∑ (𝑙𝑜𝑔𝑡𝑖
+ − 𝜇)2𝑛

𝑖=𝑟+1

𝜎2
+

(𝜇 − 𝑢)2

𝑣2
]] 

∝ 𝑒𝑥𝑝 [−
1

2
[
∑ (𝑙𝑜𝑔𝑡𝑖)

2𝑟
𝑖=1 − 2𝜇 ∑ 𝑙𝑜𝑔𝑡𝑖

𝑟
𝑖=1 + 𝑟𝜇2 + ∑ (𝑙𝑜𝑔𝑡𝑖

+)2𝑛
𝑖=𝑟+1 − 2𝜇 ∑ 𝑙𝑜𝑔𝑡𝑖

+𝑛
𝑖=𝑟+1 + (𝑛 − 𝑟)𝜇2

𝜎2

+
𝜇2 − 2𝜇𝑢 + 𝑢2

𝑣2
]] 

∝ 𝑒𝑥𝑝 [−
1

2
[
𝑣2 ∑ (𝑙𝑜𝑔𝑡𝑖)

2𝑟
𝑖=1 − 2𝜇𝑣2 ∑ 𝑙𝑜𝑔𝑡𝑖

𝑛
𝑖=1 + 𝑛𝜇2𝑣2 + 𝑣2 ∑ (𝑙𝑜𝑔𝑡𝑖

+)2𝑛
𝑖=𝑟+1 − 2𝜇𝑣2 ∑ 𝑙𝑜𝑔𝑡𝑖

+𝑛
𝑖=𝑟+1 + 𝜇2𝜎2 − 2𝜇𝑢𝜎2 + 𝑢2𝜎2

𝜎2𝑣2
]] 

Dropping all terms that do not involve 𝜇 gives: 

𝜋(𝜇|𝑡) ∝ 𝑒𝑥𝑝 [−
1

2
[
𝜇2𝜎2 + 𝑛𝜇2𝑣2 − 2𝜇𝑣2 ∑ 𝑙𝑜𝑔𝑡𝑖

𝑛
𝑖=1 − 2𝜇𝑣2 ∑ 𝑙𝑜𝑔𝑡𝑖

+𝑛
𝑖=𝑟+1 − 2𝜇𝑢𝜎2

𝜎2𝑣2
]] 
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𝜋(𝜇|𝑡) ∝ 𝑒𝑥𝑝 [−
1

2
[
𝜇2(𝜎2 + 𝑛𝑣2) − 2𝜇(𝑣2 ∑ 𝑙𝑜𝑔𝑡𝑖

𝑛
𝑖=1 + 𝑣2 ∑ 𝑙𝑜𝑔𝑡𝑖

+𝑛
𝑖=𝑟+1 + 𝑢𝜎2)

𝜎2𝑣2
]] 

Dividing the numerator and denominator by 𝜎2 + 𝑛𝑣2 gives: 

𝜋(𝜇|𝑡) ∝ 𝑒𝑥𝑝

[
 
 
 

−
1

2
[
𝜇2 − 2𝜇 (

𝑢𝜎2+𝑣2 ∑ 𝑙𝑜𝑔𝑡𝑖
𝑛
𝑖=1 +𝑣2 ∑ 𝑙𝑜𝑔𝑡𝑖

+𝑛
𝑖=𝑟+1

𝜎2+𝑛𝑣2 )

𝜎2𝑣2

𝜎2+𝑛𝑣2

]

]
 
 
 

 

Completing the square in 𝜇 gives:  

∝ 𝑒𝑥𝑝

[
 
 
 
 

−
1

2
[
𝜇2 − 2𝜇 (

𝑢𝜎2+𝑣2 ∑ 𝑙𝑜𝑔𝑡𝑖
𝑛
𝑖=1 +𝑣2 ∑ 𝑙𝑜𝑔𝑡𝑖

+𝑛
𝑖=𝑟+1

𝜎2+𝑛𝑣2 ) + (
𝑢𝜎2+𝑣2 ∑ 𝑙𝑜𝑔𝑡𝑖

𝑛
𝑖=1 +𝑣2 ∑ 𝑙𝑜𝑔𝑡𝑖

+𝑛
𝑖=𝑟+1

𝜎2+𝑛𝑣2 )
2

𝜎2𝑣2

𝜎2+𝑛𝑣2

]

]
 
 
 
 

 

𝜋(𝜇|𝑡) ∝ 𝑒𝑥𝑝

[
 
 
 
 

−
1

2
[
(𝜇 −

𝑢𝜎2+𝑣2 ∑ 𝑙𝑜𝑔𝑡𝑖
𝑛
𝑖=1 +𝑣2 ∑ 𝑙𝑜𝑔𝑡𝑖

+𝑛
𝑖=𝑟+1

𝜎2+𝑛𝑣2 )
2

𝜎2𝑣2

𝜎2+𝑛𝑣2

]

]
 
 
 
 

 

This implies that 𝜇 is normally distributed with: 

𝜇̂ =
𝑢𝜎2 + 𝑣2 ∑ 𝑙𝑜𝑔𝑡𝑖

𝑛
𝑖=1 + 𝑣2 ∑ 𝑙𝑜𝑔𝑡𝑖

+𝑛
𝑖=𝑟+1

𝜎2 + 𝑛𝑣2
;           𝜎̂2 =

𝜎2𝑣2

𝜎2 + 𝑛𝑣2
 

Therefore, the following axiom is established: 

Axiom 1: 

(a) The mean remission time (that is, the mean of 𝑇) is given as: 

𝜇𝑇 = 𝑒𝑥𝑝 [
𝑢𝜎2 + 𝑣2 ∑ 𝑙𝑜𝑔𝑡𝑖

𝑛
𝑖=1 + 𝑣2 ∑ 𝑙𝑜𝑔𝑡𝑖

+𝑛
𝑖=𝑟+1

𝜎2 + 𝑛𝑣2
+

1

2
(

𝜎2𝑣2

𝜎2 + 𝑛𝑣2
)] 

(b) The variance of the remission time (that is, the variance of 𝑇) is given as: 

𝜎𝑇
2 = [𝑒𝑥𝑝 (

𝜎2𝑣2

𝜎2 + 𝑛𝑣2
) − 1] 𝑒𝑥𝑝 [2 (

𝑢𝜎2 + 𝑣2 ∑ 𝑙𝑜𝑔𝑡𝑖
𝑛
𝑖=1 + 𝑣2 ∑ 𝑙𝑜𝑔𝑡𝑖

+𝑛
𝑖=𝑟+1

𝜎2 + 𝑛𝑣2
) +

𝜎2𝑣2

𝜎2 + 𝑛𝑣2
] 
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3.2 Simulation 

3.2.1 Log-normal distribution with censored observations via MLE 

Suppose that in a study of the efficacy of a new drug, 12 mice with tumors are given the drug. The experimenter decides 

to terminate the study after 9 mice have died. The survival times are in weeks, 5, 8, 9, 10, 12, 15, 20, 21, 25, 25+, 25+, and 

25+, as shown in Table 1. Assume that the times to death of these mice follow the log-normal distribution. In this case 

𝑛 = 12, 𝑟 = 9, and 𝑛 − 𝑟 = 3. Using equations (14) and (15) (where the coefficients 𝑎𝑖 and 𝑏𝑖 are as calculated and 

tabulated by Saharan and Greenberg for 𝑛 ≤ 20), 𝜇̂ and 𝜎̂ can be calculated as: 

𝜇̂ = 0.036𝑙𝑜𝑔5 + 0.0581𝑙𝑜𝑔8 + 0.0682𝑙𝑜𝑔9 + 0.0759𝑙𝑜𝑔10 + 0.0827𝑙𝑜𝑔12 + 0.0888𝑙𝑜𝑔15 + 0.0948𝑙𝑜𝑔20 + 0.1006𝑙𝑜𝑔21 + 0.3950𝑙𝑜𝑔25 

⟹ 𝜇̂ = 2.811 

𝜎̂ = −0.2545𝑙𝑜𝑔5 − 0.1487𝑙𝑜𝑔8 − 0.1007𝑙𝑜𝑔9 − 0.0633𝑙𝑜𝑔10 − 0.0308𝑙𝑜𝑔12 − 0.0007𝑙𝑜𝑔15 + 0.0286𝑙𝑜𝑔20 + 0.0582𝑙𝑜𝑔21 + 0.5119𝑙𝑜𝑔25 

⟹ 𝜎̂ = 0.747 

TABLE 1 

Survival Times (In Weeks) of 12 Mice Test Drug Subjects 

𝑡𝑖 𝑙𝑜𝑔𝑡𝑖 𝑙𝑜𝑔𝑡𝑖
+ 

5 0.6970  

8 0.9031  

9 0.9542  

10 1.0000  

12 1.0792  

15 1.1761  

20 1.3010  

21 1.3222  

25 1.3979  

25+  1.3979 

25+  1.3979 

25+  1.3979 

Total 9.8307 4.1937 

Mean 1.1687 

Variance 0.6269 
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3.2.2 Log-normal distribution with censored observations via Bayesian Estimation 

Using the same case study in 3.2.2 we compute the 𝜇̂ and 𝜎̂2, at say 𝑢 = 0 and 𝑣 = 1. Thus, we have that: 

𝜇̂ =
𝑢𝜎2 + 𝑣2 ∑ 𝑙𝑜𝑔𝑡𝑖

𝑛
𝑖=1 + 𝑣2 ∑ 𝑙𝑜𝑔𝑡𝑖

+𝑛
𝑖=𝑟+1

𝜎2 + 𝑛𝑣2
=

(0)(0.6269) + (1)(9.8307) + (1)(4.1937)

(0.6269) + (5)(1)
 

⟹ 𝜇̂ = 2.4924 

𝜎̂2 =
(0.6269)(1)

(0.6269) + (5)(1)
≅ 0.1114 

3.2.3 Discussion of results 

Table 4 summarizes the simulation of the results. But the results of this study are summarized in Table 2 and Table 3. Table 

2 showed the established result from the stated theorem, in which case the parameter estimates of 𝜇 and 𝜎, using the 

maximum likelihood estimation and Bayesian estimation procedures under uncensored circumstance was obtained. But 

Table 3 showed the established results from deduced axioms in which case the values of 𝜇𝑇 and 𝜎𝑇
2, using the maximum 

likelihood estimation and Bayesian estimation procedures under censored circumstance is obtained. 

Our study confirms the existence of  𝜇 and 𝜎 for both the MLE and Bayesian procedures under a censored circumstance, 

particularly at the specific choice of (𝑢, 𝑣) = (0, 1), a standard normal instance of our prior used for the simulation in the 

study. Moreso, our results confirm the non-existence of 𝜇𝑇 and 𝜎𝑇
2 for both the MLE and Bayesian procedures under 

censored circumstances. 

TABLE 2 

Established Results from Stated Theorems 

Case 𝜇̂ 𝜎̂2 

Censored Maximum Likelihood Estimate 

∑𝑎𝑖𝑙𝑜𝑔𝑡(𝑖)

𝑟

𝑖=1

 ∑𝑏𝑖𝑙𝑜𝑔𝑡(𝑖)

𝑟

𝑖=1

 

Bayesian Estimate 

𝑢𝜎2 + 𝑣2 ∑ 𝑙𝑜𝑔𝑡𝑖
𝑛
𝑖=1 + 𝑣2 ∑ 𝑙𝑜𝑔𝑡𝑖

+𝑛
𝑖=𝑟+1

𝜎2 + 𝑛𝑣2
 

𝜎2𝑣2

𝜎2 + 𝑛𝑣2
 

TABLE 3 

Established Results from Deduced Axioms 

Case 𝜇𝑇 𝜎𝑇
2 

Censored Maximum Likelihood Estimate 

Nil Nil 

Bayesian Estimate 

Nil Nil 
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TABLE 4 

Simulation Results 

Case 𝜇̂ 𝜎̂2 

Uncensored Maximum Likelihood Estimate 

2.811 0.747 

Bayesian Estimate 

2.4924 0.1114 

4.  CONCLUSION  

To conclude, our study proposed and implemented a Bayesian alternative estimation procedure on the log-normal survival 

distribution (without covariates, under censored circumstance) with which parameters, 𝜇 and 𝜎 were estimated under. For 

both of the estimated parameters, two axioms were deduced about the mean and variance of the survival time. Our results 

showed that one could obtain the parameter estimates of 𝜇 and 𝜎, via maximum likelihood estimation as well as Bayesian 

estimation procedures under censored circumstance; it also confirmed that parameters of the log-normal distribution existed 

whether through the MLE or Bayesian procedure, under censored circumstance, especially for the case of a standard normal 

prior. Regardless, our study also confirmed that 𝜇𝑇 and 𝜎𝑇
2 did not exist for both the MLE and Bayesian procedures under 

censored circumstance. 
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