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ABSTRACT 

In this article, we proposed and implemented a Bayesian approach to estimating parameters of the log-normal survival distributions 

(without covariates) under uncensored circumstance. The log-normal survival distributions are only one out of several survival 

distributions used for tackling problems in survival analysis. The research reviewed several recent literatures which unraveled the 

absence of scholarly works addressing the need for an alternative procedure that considered these peculiar cases of a log-normal survival 

distribution; in turn, this gap in literature birthed a necessity for this research. Thereon, the Bayesian estimation technique was used to 

estimate the parameters of the log-normal survival distributions, and to also deduce the mean and variance of the survival time. The 

results of the research showed how one could obtain the parameter estimates of 𝜇 and 𝜎, through maximum likelihood estimation and 

Bayesian estimation procedures under uncensored circumstance. The results of the study also confirmed that 𝜇 and 𝜎 existed for both 

MLE and Bayesian procedures under uncensored circumstance, particularly at (𝑢, 𝑣) = (0, 1) – which is a standard normal instance of 

our prior used for the simulation in the study. 

Keywords: Log-normal Survival Distribution, Uncensored Circumstance, Bayesian Estimation, Normal Informative Prior. 

1.  INTRODUCTION 

1.1 Background of the study 

In statistics, survival analysis is a branch which estimates the expected duration of time until one, or more, occurrences 

(such as: death in biological organisms, and failure in mechanical systems) happen [1; 3; 5]. Survival analysis has found 

applications, in recent times, in the fields of: clinical sciences, engineering, and industry, ultimately implying that survival 

analysis applications in most real-life scenarios cannot be overemphasized [6; 9]. 

Whereas in the field of engineering, process engineers aim to estimate the time which is available until a machine fails, 

clinical scientists may be interested in estimating the time available until cancer reoccurs, or until a badly-injured individual 

dies due to his injuries, or until a terminal illness overwhelms an individual, etc. [4; 8; 9] In order to make such estimations, 

these experienced professionals may rely on intuition for making such estimations [7; 8]. In this instance, survival analysis 

becomes a preferred way for making non-intuitive based estimation of such times described, with high level of precision 

[2; 12; 13]. 

Overtime, in performing survival analysis, survival analysts have developed what are referred to as “survival distributions”. 

Survival distributions are statistical distributions specifically redesigned to attend to the demands of survival analysis, such 

as obtaining the survivorship functions, hazard functions, etc. [4; 13; 14] Since the development of survival analysis in the 
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early 1940s, as a very vital bio-statistical tool, about six statistical distributions such as the: exponential, Weibull, log-

normal, gamma, generalized gamma, and log-logistic distributions, have been used for studies on survival analysis, with 

the exponential survival distribution being the most commonly used distribution out of the lot [2; 3]. Notwithstanding, the 

log-normal survival distribution is also a survival distribution that has been extensively used because of its efficacy in 

reliability applications to model failure times [1; 10; 11]. 

The log-normal survival distribution is a survival distribution redesigned from the known log-normal statistical distribution 

with a slight interpretational variation [3; 5; 9]. Compared to the conventional log-normal statistical distribution, the log-

normal survival distribution may be used to deduce the hazard function and survivorship function. For all the survival 

distributions, and of course the log-normal survival distribution, all parameters have been estimated overtime via the 

general maximum likelihood estimation (MLE) procedure, and this has no doubt yielded formidable results [4; 10; 13]. 

Notwithstanding, in this research, attempt was made at adopting a Bayesian estimation alternative as this could lead to 

deeper theoretical and practical results, comparatively. 

1.2 Statement of the problem 

The method of maximum likelihood estimation – MLE is often used for estimating the parameters of survival distributions, 

in survival analysis. Until the recent emergence of attempts at estimating the parameters of survival distributions using 

Bayesian technique, MLE had remained the only estimation approach. Notwithstanding, from sufficient review of available 

literature on survival distributions, a majority of researchers who have investigated this matter have approached it usually 

disregarding the nature and sensitivity of the survival distributions whose parameters they intend to estimate. For instance, 

concerns about how the parameters of the distributions should be estimated under uncensored cases seem not be considered 

at all. [14] was one (among several) attempts to overcome this pitfall, as they used a reference Bayesian approach for the 

estimating the parameters of the generalized log-normal distribution in the presence of survival data. Notwithstanding, 

their study did not consider the cases of censored and uncensored observations. Addressing the gap using the log-normal 

survival distribution with an informative prior is, thus, the interest of this study. 

1.3 Aim and objectives of the study 

This study utilized a Bayesian approach to estimating parameters of the log-normal survival distribution with applications. 

In line with achieving the stated aim, the objectives of the study were to: (i) review the MLE procedure for estimating the 

parameters of the log-normal survival distribution, (ii) formulate the Bayesian estimation alternative to the MLE procedure, 

and (iii) establish any necessary theorem and axiom based on findings. 

2.  MATERIALS AND METHODS  

2.1 General maximum likelihood estimation procedure 

2.1.1 Estimation procedures for data with right-censored observations 

Suppose that 𝑛 persons were followed to their deaths or censored in a study. Let 𝑡1, 𝑡2, … , 𝑡𝑟,  𝑡𝑟+1
+ , 𝑡𝑟+2

+ , … , 𝑡𝑛
+ be the 

survival times observed from the 𝑛 individuals, with 𝑟 exact times and (𝑛 − 𝑟) right-censored times. Assume that the 

survival times follow a distribution with the density function 𝑓(𝑡, 𝒃) and survivorship function 𝑆(𝑡, 𝒃), where 𝒃 =

(𝑏1, … , 𝑏𝑝) denotes unknown 𝑝 parameters 𝑏1, … , 𝑏𝑝 in the distribution. If the survival time is discrete (i.e., it is observed 

at discrete time only), 𝑓(𝑡, 𝒃) represents the probability of observing 𝑡 and 𝑆(𝑡, 𝒃) represents the probability that the 

survival or event time is greater than 𝑡. In other words, 𝑓(𝑡, 𝒃) and 𝑆(𝑡, 𝒃) represent the information that can be obtained 

respectively from an observed uncensored survival time and observed right-censored survival time. Thus, the product 

∏ 𝑓(𝑡𝑖 ,  𝒃)𝑛
𝑖=1  represents the joint probability of observing the uncensored survival times, and ∏ 𝑆(𝑡𝑖

+,  𝒃)𝑛
𝑖=𝑟+1  represents 

the joint probability of those right-censored survival times. The product of these two probabilities, denoted by 𝐿(𝒃), 

𝐿(𝒃) = ∏ 𝑓(𝑡𝑖 ,  𝒃)

𝑛

𝑖=1

∏ 𝑆(𝑡𝑖
+,  𝒃)

𝑛

𝑖=𝑟+1

 

represents the joint probability of observing 𝑡1, 𝑡2, … , 𝑡𝑟, 𝑡𝑟+1
+ , 𝑡𝑟+2

+ , … , 𝑡𝑛
+. A similar interpretation applies to continuous 

survival 𝐿(𝒃) is called the likelihood function of 𝒃, which can also be interpreted as a measure of the likelihood of observing 

a specific set of survival times 𝑡1, 𝑡2, … , 𝑡𝑟, 𝑡𝑟+1
+ , 𝑡𝑟+2

+ , … , 𝑡𝑛
+, given a specific set of parameters 𝒃. The method of the MLE 

is to find an estimator of 𝒃 that maximizes 𝐿(𝒃), or in other words, which is “most likely” to have produced the observed 

data 𝑡1, 𝑡2, … , 𝑡𝑟, 𝑡𝑟+1
+ , 𝑡𝑟+2

+ , … , 𝑡𝑛
+. Take the logarithm of 𝐿(𝒃) and denote it by 𝑙(𝒃), 
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𝑙(𝒃) = 𝑙𝑜𝑔 𝐿 (𝒃) = ∑𝑙𝑜𝑔[𝑓(𝑡𝑖, 𝒃)]

𝒓

𝒊=𝟏

+ ∑ 𝑙𝑜𝑔[𝑆(𝑡𝑖
+, 𝒃)]

𝒓

𝒊=𝒓+𝟏

                           (1) 

Then the MLE 𝒃̂ is a 𝒃 is the set of 𝑏̂1, 𝑏̂2, … , 𝑏̂𝑝 that maximizes 𝑙(𝒃): 

𝑙(𝒃̂) = 𝑚𝑎𝑥
𝑎𝑙𝑙𝑏

(𝑙(𝒃)) 

It is clear that 𝒃̂ is a solution of the following simultaneous equations, which are obtained by taking the derivative of 𝑙(𝒃) 

with respect to each 𝑏𝑗: 

𝜕𝑙(𝒃)

𝜕𝑏𝑗

= 0   𝑗 = 1,2, … , 𝑝                                                      (2) 

To obtain the MLE 𝒃̂, one can use a numerical method. A commonly used numerical method is the Newton-Raphson 

iterative procedure, which can be summarized as follows. 

i. Let the initial values 𝑏1, … , 𝑏𝑝 be zero; that is, let 

𝒃(0) = 0 

ii. The changes for 𝒃 at each subsequent step, denoted by Δ
(𝑗), is obtained by taking the second derivative of 

the log-likelihood function: 

Δ
(𝑗) = [−

𝜕2𝑙(𝒃(𝑗−1))

𝜕𝒃𝜕𝒃′
]

−1
𝜕𝑙(𝒃(𝑗−1))

𝜕𝒃
                                              (3) 

iii. Using Δ
(𝑗), the value of 𝒃(𝑗) at 𝑗𝑡ℎ step is 

𝒃(𝑗) = 𝒃(𝑗−1) + Δ
(𝑗)  𝑗 = 1,2,3, … 

The iteration terminates at, say, the 𝑚𝑡ℎ step if ‖Δ
(𝑚)‖ < 𝛿, where 𝛿 is a given precision, usually a very small value, 10−4 

or 10−5. Then the MLE 𝒃̂ is defined as 

𝒃̂ = 𝒃(𝑚−1)                                                                    (4) 

The estimated covariance matrix of the MLE 𝒃̂ is given by 

𝑣𝑎𝑟
𝛬

(𝒃̂) = 𝑐𝑜𝑣
𝛬

(𝒃̂) = [−
𝜕2𝑙(𝒃̂)

𝜕𝒃𝜕𝒃′
]

−1

                                                    (5) 

One of the good properties of a MLE is that if 𝒃̂ is the MLE of 𝒃, then 𝑔(𝒃̂) is the MLE of 𝑔(𝒃) if 𝑔(𝒃) is a finite function 

and need not be one-to-one. 

The estimated 100(1 − 𝛼)% confidence interval for any parameter 𝑏𝑖 is 

(𝒃̂𝒊 − 𝒁𝜶 𝟐⁄ √𝒗𝒊𝒊𝒃̂𝒊 + 𝒁𝜶 𝟐⁄ √𝒗𝒊𝒊)                                                               (6) 

where 𝑣𝑖𝑖  is the 𝑖𝑡ℎ diagonal element of 𝑉̂(𝒃̂) and 𝑍𝛼 2⁄  is the 100(1 − 𝛼 2⁄ ) percentile point of the standard normal 

distribution [𝑃(𝑍 > 𝑍𝛼 2⁄ ) = 𝛼 2⁄ ]. For a finite function 𝑔(𝑏𝑖) of 𝑏𝑖, the estimated 100(1 − 𝛼)% confidence interval for 

𝑔(𝒃𝒊) is its respective range 𝑅 on the confidence interval in equation (6), that is, 

𝑅 = {𝑔(𝒃𝒊): 𝒃𝒊 ∈ (𝒃̂𝒊 − 𝒁𝜶 𝟐⁄ √𝒗𝒊𝒊𝒃̂𝒊 + 𝒁𝜶 𝟐⁄ √𝒗𝒊𝒊)}                                             (7) 

In case 𝑔(𝑏𝑖) is monotone in 𝑏𝑖, the estimated 100(1 − 𝛼)% confidence interval for 𝑔(𝑏𝑖) is 
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𝑅 = {𝑔(𝒃̂𝒊 − 𝒁𝜶 𝟐⁄ √𝒗𝒊𝒊),  𝑔(𝒃̂𝒊 + 𝒁𝜶 𝟐⁄ √𝒗𝒊𝒊)}                                                   (8) 

2.1.2 Estimation procedures for data with right-, left-, and interval-censored observations 

If the survival times 𝑡1, 𝑡2, … , 𝑡𝑛 observed for the 𝑛 persons consist of uncensored left-, right-, and interval-censored 

observations, the estimation procedures are similar. Assume that the survival times follow a distribution with the density 

function 𝑓(𝑡, 𝒃) and the survivorship function 𝑆(𝑡, 𝒃), where 𝒃 denotes all unknown parameters of the distribution. Then 

the log-likelihood function is 

𝑙(𝒃) = 𝑙𝑜𝑔 𝐿 (𝒃) = ∑ 𝑙𝑜𝑔[𝑓(𝑡𝑖, 𝒃)] + ∑𝑙𝑜𝑔[𝑆(𝑡𝑖, 𝒃)]

  + ∑𝑙𝑜𝑔[1 − 𝑆(𝑡𝑖 , 𝒃)] + ∑ 𝑙𝑜𝑔[𝑆(𝑣𝑖 , 𝒃) − 𝑆(𝑡𝑖 , 𝒃)]
}                                   (9) 

where the first sum is over the uncensored observations, the second sum over the right-censored observations, the third 

sum over the left-censored observations, and the last sum over the interval-censored observations, with 𝑣𝑖 as the lower end 

of a censoring interval. The other steps for obtaining the MLE 𝒃̂ of 𝒃 are similar to the steps shown in section (2.1.1) by 

substituting the log-likelihood function defined in equation (1) with the log-likelihood function in equation (9). 

2.2 Log-normal distribution 

If the survival time 𝑇 follows the log-normal distribution with density function given by equation (10), then the mean and 

the variance are respectively 𝑒𝑥𝑝 (𝜇 +
1

2
𝜎2) and [𝑒𝑥𝑝(𝜎2) − 1]𝑒𝑥𝑝(2𝜇 + 𝜎2). 

𝑓(𝑡) =
1

𝑡𝜎√2𝜋
𝑒𝑥𝑝 [−

1

2𝜎2
(𝑙𝑜𝑔𝑡 − 𝜇)2]                                                                                (10) 

Estimation of the two parameters 𝜇 and 𝜎2 has been investigated either by using equation (10) directly or by using the fact 

that 𝑌 = log 𝑇 follows the normal distribution with mean 𝜇 and variance 𝜎2. 

2.2.1 Estimation of 𝜇 and 𝜎2 for data without censored observations 

Estimations of 𝜇 and 𝜎2 for complete samples by maximum likelihood methods have been studied by many authors. But 

the simplest way to obtain estimates of 𝜇 and 𝜎2 with optimum properties is by considering the distribution of 𝑌 = log 𝑇. 

Let 𝑡1, 𝑡2, 𝑡3, … , 𝑡𝑛 be the survival times of 𝑛 subsets. The MLE of 𝜇 is the sample mean of 𝑌 given by: 

𝜇̂ =
1

𝑛
∑𝑙𝑜𝑔𝑡𝑖

𝑛

𝑖=1

                                                                                                                             (11) 

The MLE of 𝜎2 is 

𝜎̂2 =
1

𝑛
[∑(𝑙𝑜𝑔𝑡𝑖)

2

𝑛

𝑖=1

−
(∑ 𝑙𝑜𝑔𝑡𝑖

𝑛
𝑖=1 )2

𝑛
]                                                                                   (12) 

The estimate 𝜇̂ is also unbiased but 𝜎̂2 is not. The best unbiased estimates of 𝜇 and 𝜎2 are 𝜇̂ and the sample variance 𝑠2 =
𝜎̂2[𝑛 (𝑛 − 1)⁄ ]. If 𝑛 is moderately large, the difference between 𝑠2 and 𝜎̂2 is negligible. 

One of the properties of the MLE is that if 𝜃̂ is the MLE of 𝜃, 𝑔(𝜃̂) is the MLE of 𝑔(𝜃) if 𝑔(𝜃) is a finite function. 

Therefore, the MLEs of the mean and variance of 𝑇 are, respectively, 𝑒𝑥𝑝 (𝜇̂ +
1

2
𝜎̂2) and [𝑒𝑥𝑝(𝜎̂2) − 1]𝑒𝑥𝑝(2𝜇̂ + 𝜎̂2). 

It is known that 𝜇̂ = 𝑦̂ is normally distributed with mean 𝜇 and variance 𝜎2 𝑛⁄ . Hence, if 𝜎 is known, a 100(1 − 𝛼)% 

confidence interval for 𝜇 is 𝜇̂ ± 𝑍𝛼 2⁄ 𝜎 √𝑛⁄ . If 𝜎 is unknown, we can use Student’s 𝑡-distribution. A 100(1 − 𝛼)% 

confidence interval for 𝜇 is 𝜇̂ ± 𝑡𝛼 2⁄ ,(𝑛−1) 𝑠 √𝑛 − 1⁄ , where 𝑡𝛼 2⁄ ,(𝑛−1) is the 100𝛼 2⁄  percentage point of Student’s 𝑡-

distribution with 𝑛 − 1 degrees of freedom. 
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Confidence intervals for 𝜎2 can be obtained by using the fact that 𝑛𝜎̂ 𝜎2⁄  has a chi-square distribution with 𝑛 − 1 degrees 

of freedom. A 100(1 − 𝛼)% confidence interval for 𝜎2 is 

𝑛𝜎̂2

𝜒(𝑛−1),𝛼 2⁄
2 < 𝜎2 <

𝑛𝜎̂2

𝜒(𝑛−1),1−𝛼 2⁄
2                                                                                                               (13) 

2.2.2 Estimation of 𝜇 and 𝜎2 for data with censored observations 

We first consider samples with singly censored observations. The data consist of 𝑟 exact survival times 𝑡(1) ≤ 𝑡(2) ≤ ⋯ ≤

𝑡(𝑟) and 𝑛 − 𝑟 right-censored survival times that are at least 𝑡(𝑟) denoted by 𝑡(𝑟)
+ . Furthermore, we use the fact that 𝑌 =

𝑙𝑜𝑔𝑇 has normal distribution with mean 𝜇 and variance 𝜎2. Estimates of 𝜇 and 𝜎2 can be obtained from the transformed 

data 𝑦𝑖 = 𝑙𝑜𝑔𝑡𝑖. Many authors have investigated the estimation of 𝜇 and 𝜎2. 

The best linear estimates of 𝜇 and 𝜎2 proposed by Saharan and Greeberg are linear combinations of the logarithms of the 

𝑟 exact survival times: 

𝜇̂ = ∑𝑎𝑖𝑙𝑜𝑔𝑡(𝑖)

𝑟

𝑖=1

                                                                                                                          (14) 

𝜎̂ = ∑ 𝑏𝑖𝑙𝑜𝑔𝑡(𝑖)

𝑟

𝑖=1

                                                                                                                          (15) 

where the coefficients 𝑎𝑖 and 𝑏𝑖 are calculated and tabulated by Saharan and Greeberg for 𝑛 ≤ 20. 

MLEs for the log-normal distribution can be used for 𝑛 > 20. Let 

𝑦̅ =
1

𝑟
∑𝑙𝑜𝑔𝑡(𝑖)

𝑟

𝑖=1

                                                                                                                          (16) 

and 

𝑠2 =
1

𝑟
[∑(𝑙𝑜𝑔𝑡(𝑖))

2
−

(∑ 𝑙𝑜𝑔𝑡(𝑖))
2

𝑟
]                                                                                    (17) 

Then the MLEs of 𝜇 and 𝜎2 are 

𝜇̂ = 𝑦̅ − 𝜆̂(𝑦̅ − 𝑙𝑜𝑔𝑡(𝑟))                                                                                                              (18) 

and 

𝜎̂2 = 𝑠2 + 𝜆̂(𝑦̅ − 𝑙𝑜𝑔𝑡(𝑟))
2
                                                                                                        (19) 

where the value of 𝜆̂ has been tabulated by Cohen in 1961 as a function of 𝑎 and 𝑏. The proportion of censored observations, 

𝑏, is calculated as 

𝑏 =
𝑛 − 𝑟

𝑛
 

and 

𝑎 =
1 − 𝑌(𝑌 − 𝑐)

(𝑌 − 𝑐)2
 

where 𝑌 = [𝑏 (1 − 𝑏)⁄ ]𝑓(𝑐) 𝐹(𝑐)⁄ , 𝑓(𝑐) and 𝐹(𝑐) being the density and distribution functions, respectively, of the 

standard normal distribution, evaluated at: 
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𝑐 = (𝑙𝑜𝑔𝑡(𝑟) − 𝜇) 𝜎⁄  

2.3 The Bayesian estimation procedure 

Let 𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑛 be a random sample from the density 𝑓(𝑥; 𝜃). Before taking the sample, the distribution of 𝜃, 𝑔(𝜃) is 

assumed known. Hence, 𝑔(𝜃) is called a prior distribution. The task is to know the distribution 𝑓(𝜃|𝑥), after taking the 

sample. Hence, 𝑓(𝜃|𝑥) is called a posterior distribution. 

Let us consider the conditional distribution 

𝑓(𝑥|𝜃) =
𝑓(𝑥; 𝜃)

𝑔(𝜃)
 

⇒ 𝑓(𝑥; 𝜃) = 𝑓(𝑥|𝜃)𝑔(𝜃)                                                          (20) 

⇒ 𝑓(𝜃|𝑥) =
𝑓(𝑥; 𝜃)

ℎ(𝑥)
                                                           (21) 

Substituting for equation (20) in equation (21) gives, 

⇒ 𝑓(𝜃|𝑥) =
𝑓(𝑥|𝜃)𝑔(𝜃)

ℎ(𝑥)
                                                         (22) 

But ∫ 𝑓(𝜃|𝑥)
𝛺

𝑑𝜃 = 1 

Therefore, 

∫𝑓(𝜃|𝑥)
𝛺

𝑑𝜃 = ∫
𝑓(𝑥|𝜃)𝑔(𝜃)

ℎ(𝑥)𝛺

𝑑𝜃 = 1 

⇒ 1 =
1

ℎ(𝑥)
∫𝑓(𝑥|𝜃)𝑔(𝜃)
𝛺

𝑑𝜃 

⇒ ℎ(𝑥) = ∫𝑓(𝑥|𝜃)𝑔(𝜃)
𝛺

𝑑𝜃                                                    (23) 

Putting equation (23) into equation (22) gives 

⇒ 𝑓(𝜃|𝑥) =
𝑓(𝑥|𝜃)𝑔(𝜃)

∫ 𝑓(𝑥|𝜃)𝑔(𝜃)𝑑𝜃
𝛺

                                                   (24) 

Since we are taking a random sample of this distribution 

𝑓(𝑥|𝜃) = 𝐿(𝑥|𝜃) = ∏𝑓(𝑥𝑖|𝜃)

𝑛

𝑖=1

 

Hence, equation (24) becomes: 

⇒ 𝑓(𝜃|𝑥) =
𝐿(𝑥|𝜃)𝑔(𝜃)

∫ 𝐿(𝑥|𝜃)𝑔(𝜃)𝑑𝜃
𝛺

                                                   (25) 

The above equation (25) gives 𝑓(𝜃|𝑥) as the posterior Bayes distribution with respect to the prior distribution 𝑔(𝜃). 

Hence, 
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𝐸[𝜏(𝜃)] = ∫𝜏(𝜃)𝑓(𝜃|𝑥)𝑑𝜃
𝛺

                                                    (26) 

is called the posterior Bayes estimator with respect to the prior distribution 𝑔(𝜃); where 𝜏(𝜃) is any function of 𝜃. 

2.4 Proposed procedure of the study 

The proposed Bayesian alternative will be implemented with the procedure below. 

Step 1: Determine an appropriate prior 𝜋(𝜇). 

The appropriate prior for the log-normal distribution is a normal distribution of 𝜇 with mean 𝑢 and 𝑣2. That is, 

𝜋(𝜇) =
1

𝑣√2𝜋
𝑒𝑥𝑝 [−

1

2𝑣2
(𝜇 − 𝑢)2] 

Step 2: Obtain the Bayesian estimates of 𝜇 and 𝜎2 for data without censored observations. 

Step 2(a): Deduce the mean remission time in this instance. 

Step 2(b): Deduce the variance of the remission time in this instance. 

3.  RESULTS 

3.1 Theorem 1 (uncensored case of log-normal survival distribution) 

Suppose that a random sample of size 𝑛 is drawn from a log-normal distribution with unknown mean 𝜇 and known variance 

𝜎2. Also, suppose that the prior distribution of 𝜇 is normal with mean 𝑢 and variance 𝑣2. Then the posterior distribution of 

𝜇 is log-normal, with mean and variance given by: 

𝜇̂ =
𝑢𝜎2 + 𝑣2 ∑ 𝑙𝑜𝑔𝑡𝑖

𝑛
𝑖=1

𝜎2 + 𝑛𝑣2
;           𝜎̂2 =

𝜎2𝑣2

𝜎2 + 𝑛𝑣2
 

Proof 1: 

𝜋(𝜇|𝑡) =
𝑓(𝑡|𝜇)𝜋(𝜇)

∫ 𝑓(𝑡|𝜇)𝜋(𝜇)𝑑𝜇
∞

−∞

 

𝜋(𝜇|𝑡) ∝ 𝑓(𝑡|𝜇)𝜋(𝜇) 

The likelihood function is given by: 

∏ 𝑓(𝑡|𝜇)

𝑛

𝑖=1

= ∏ {
1

𝑡𝜎√2𝜋
𝑒

−
1

2𝜎2(𝑙𝑜𝑔𝑡𝑖−𝜇)2
}

𝑛

𝑖=1

 

⇒ ∏𝑓(𝑡|𝜇)

𝑛

𝑖=1

=
1

∏ 𝑡𝑖
𝑛
𝑖=1 𝜎𝑛(2𝜋)

𝑛

2

𝑒
−

1

2𝜎2 ∑ (𝑙𝑜𝑔𝑡𝑖−𝜇)2𝑛
𝑖=1  

The prior distribution of 𝜇 is given by: 

𝜋(𝜇) =
1

𝑣√2𝜋
𝑒𝑥𝑝 [−

1

2𝑣2
(𝜇 − 𝑢)2] 

The posterior distribution is: 
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𝜋(𝜇|𝑡) ∝ 𝑒𝑥𝑝 [−
1

2𝜎2
∑(𝑙𝑜𝑔𝑡𝑖 − 𝜇)2

𝑛

𝑖=1

−
(𝜇 − 𝑢)2

2𝑣2
] 

𝜋(𝜇|𝑡) ∝ 𝑒𝑥𝑝 [−
1

2
[
∑ (𝑙𝑜𝑔𝑡𝑖 − 𝜇)2𝑛

𝑖=1

𝜎2
+

(𝜇 − 𝑢)2

𝑣2
]] 

𝜋(𝜇|𝑡) ∝ 𝑒𝑥𝑝 [−
1

2
[
∑ (𝑙𝑜𝑔𝑡𝑖)

2𝑛
𝑖=1 − 2𝜇 ∑ 𝑙𝑜𝑔𝑡𝑖

𝑛
𝑖=1 + 𝑛𝜇2

𝜎2
+

𝜇2 − 2𝜇𝑢 + 𝑢2

𝑣2
]] 

∝ 𝑒𝑥𝑝 [−
1

2
[
𝑣2 ∑ (𝑙𝑜𝑔𝑡𝑖)

2𝑛
𝑖=1 − 2𝜇𝑣2 ∑ 𝑙𝑜𝑔𝑡𝑖

𝑛
𝑖=1 + 𝑛𝜇2𝑣2 + 𝜇2𝜎2 − 2𝜇𝑢𝜎2 + 𝑢2𝜎2

𝜎2𝑣2
]] 

Dropping all terms that do not involve 𝜇 gives: 

𝜋(𝜇|𝑡) ∝ 𝑒𝑥𝑝 [−
1

2
[
𝜇2𝜎2 + 𝑛𝜇2𝑣2 − 2𝜇𝑣2 ∑ 𝑙𝑜𝑔𝑡𝑖

𝑛
𝑖=1 − 2𝜇𝑢𝜎2

𝜎2𝑣2
]] 

𝜋(𝜇|𝑡) ∝ 𝑒𝑥𝑝 [−
1

2
[
𝜇2(𝜎2 + 𝑛𝑣2) − 2𝜇(𝑣2 ∑ 𝑙𝑜𝑔𝑡𝑖

𝑛
𝑖=1 + 𝑢𝜎2)

𝜎2𝑣2
]] 

Dividing the numerator and denominator by 𝜎2 + 𝑛𝑣2 gives: 

𝜋(𝜇|𝑡) ∝ 𝑒𝑥𝑝 [−
1

2
[
𝜇2 − 2𝜇 (

𝑢𝜎2+𝑣2 ∑ 𝑙𝑜𝑔𝑡𝑖
𝑛
𝑖=1

𝜎2+𝑛𝑣2 )

𝜎2𝑣2

𝜎2+𝑛𝑣2

]] 

Completing the square in 𝜇 gives: 

𝜋(𝜇|𝑡) ∝ 𝑒𝑥𝑝

[
 
 
 
 

−
1

2
[
𝜇2 − 2𝜇 (

𝑢𝜎2+𝑣2 ∑ 𝑙𝑜𝑔𝑡𝑖
𝑛
𝑖=1

𝜎2+𝑛𝑣2 ) + (
𝑢𝜎2+𝑣2 ∑ 𝑙𝑜𝑔𝑡𝑖

𝑛
𝑖=1

𝜎2+𝑛𝑣2 )
2

𝜎2𝑣2

𝜎2+𝑛𝑣2

]

]
 
 
 
 

 

𝜋(𝜇|𝑡) ∝ 𝑒𝑥𝑝

[
 
 
 
 

−
1

2
[
(𝜇 −

𝑢𝜎2+𝑣2 ∑ 𝑙𝑜𝑔𝑡𝑖
𝑛
𝑖=1

𝜎2+𝑛𝑣2 )
2

𝜎2𝑣2

𝜎2+𝑛𝑣2

]

]
 
 
 
 

 

This implies that 𝜇 is normally distributed with: 

𝜇̂ =
𝑢𝜎2 + 𝑣2 ∑ 𝑙𝑜𝑔𝑡𝑖

𝑛
𝑖=1

𝜎2 + 𝑛𝑣2
;           𝜎̂2 =

𝜎2𝑣2

𝜎2 + 𝑛𝑣2
 

Therefore, the following axiom is established: 

Axiom 1: 

(a) The mean remission time (that is, the mean of 𝑇) is given as: 

𝜇𝑇 = 𝑒𝑥𝑝 [
𝑢𝜎2 + 𝑣2 ∑ 𝑙𝑜𝑔𝑡𝑖

𝑛
𝑖=1

𝜎2 + 𝑛𝑣2
+

1

2
(

𝜎2𝑣2

𝜎2 + 𝑛𝑣2
)] 
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(b) The variance of the remission time (that is, the variance of 𝑇) is given as: 

𝜎𝑇
2 = [𝑒𝑥𝑝 (

𝜎2𝑣2

𝜎2 + 𝑛𝑣2
) − 1] 𝑒𝑥𝑝 [2 (

𝑢𝜎2 + 𝑣2 ∑ 𝑙𝑜𝑔𝑡𝑖
𝑛
𝑖=1

𝜎2 + 𝑛𝑣2
) +

𝜎2𝑣2

𝜎2 + 𝑛𝑣2
] 

3.2 Simulation 

3.2.1 Log-normal distribution without censored observations via MLE 

Five melanoma (resected) patients receiving immunotherapy BCG are followed. The remission durations in weeks are, in 

order of magnitude, 8, 16, 23, 27, and 28, as shown in Table 1. Suppose that the remission times follow a lognormal 

distribution. Estimate of the parameters may be obtained as follows. 

𝜇̂ =
14.615

5
= 2.923 

𝜎̂2 =
1

5
[43.806 −

1

5
(14.615)2] = 0.217 

𝑠2 =
5𝜎̂2

5 − 1
= 0.271 

The mean remission time is 𝑒𝑥𝑝 (2.923 +
0.217

2
), or 20.728 weeks, and the standard deviation of the remission times is 

[[𝑒𝑥𝑝(0.217) − 1]𝑒𝑥𝑝(5.846 + 0.217)]
1

2 or 10.204 weeks. A 95% confidence interval for 𝜇 is: 

2.973 − 2.776 (
0.521

√4
) < 𝜇 < 2.923 + 2.776 (

0.521

√4
) = (2.200, 3.646) 

A 95% confidence interval for 𝜎2 is: 

5(0.217)

11.1433
< 𝜎2 <

5(0.217)

0.4844
= (0.097, 2.240) 

TABLE 1 

Remission Durations of Melanoma Patients 

𝑡𝑖 𝑙𝑜𝑔𝑡𝑖 (𝑙𝑜𝑔𝑡𝑖)
2 

8 2.079 4.322 

16 2.773 7.690 

23 3.135 9.828 

27 3.296 10.864 

28 3.332 11.102 

Total 14.615 43.806 

Mean 2.923  

Variance 0.217  
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3.2.2 Log-normal distribution without censored observations via Bayesian Estimation 

Using the same case study in 3.2.1 we compute the 𝜇̂ and 𝜎̂2, at say 𝑢 = 0 and 𝑣 = 1. Thus, we have that: 

𝜇̂ =
𝑢𝜎2 + 𝑣2 ∑ 𝑙𝑜𝑔𝑡𝑖

𝑛
𝑖=1

𝜎2 + 𝑛𝑣2
=

(0)(0.217) + (1)(14.615)

(0.217) + (5)(1)
≅ 2.8014 

𝜎̂2 =
𝜎2𝑣2

𝜎2 + 𝑛𝑣2
=

(0.217)(1)

(0.217) + (5)(1)
≅ 0.0416 

𝑠2 =
5𝜎̂2

5 − 1
=

5(0.0416)

5 − 1
= 0.052 

The mean remission time is 𝑒𝑥𝑝 (2.8014 +
0.0416

2
), or 16.814 weeks, and the standard deviation of the remission times is 

[[𝑒𝑥𝑝(0.0416) − 1]𝑒𝑥𝑝(5.6028 + 0.0416)]
1

2 or 3.465 weeks. A 95% confidence interval for 𝜇 is: 

2.8014 − 2.776 (
0.228

√4
) < 𝜇 < 2.8014 + 2.776 (

0.228

√4
) = (2.485, 3.117864) 

A 95% confidence interval for 𝜎2 is: 

5(0.0416)

11.1433
< 𝜎2 <

5(0.0416)

0.4844
= (0.019, 0.429) 

3.2.3 Discussion of results 

Table 4 summarizes the simulation of the results. But the results of this study are summarized in Table 2 and Table 3. Table 

2 showed the established result from the stated theorem, in which case the parameter estimates of 𝜇 and 𝜎, using the 

maximum likelihood estimation and Bayesian estimation procedures under uncensored circumstance was obtained. But 

Table 3 showed the established results from deduced axioms in which case the values of 𝜇𝑇 and 𝜎𝑇
2, using the maximum 

likelihood estimation and Bayesian estimation procedures under uncensored circumstance is obtained. 

Our study confirms the existence of  𝜇 and 𝜎 for both the MLE and Bayesian procedures under an uncensored circumstance, 

particularly at the specific choice of (𝑢, 𝑣) = (0, 1), a standard normal instance of our prior used for the simulation in the 

study. 

TABLE 2 

Established Results from Stated Theorems 

Case 𝜇̂ 𝜎̂2 

Uncensored Maximum Likelihood Estimate 

1

𝑛
∑𝑙𝑜𝑔𝑡𝑖

𝑛

𝑖=1

 
1

𝑛
[∑(𝑙𝑜𝑔𝑡𝑖)

2

𝑛

𝑖=1

−
(∑ 𝑙𝑜𝑔𝑡𝑖

𝑛
𝑖=1 )2

𝑛
] 

Bayesian Estimate 

𝑢𝜎2 + 𝑣2 ∑ 𝑙𝑜𝑔𝑡𝑖
𝑛
𝑖=1

𝜎2 + 𝑛𝑣2
 

𝜎2𝑣2

𝜎2 + 𝑛𝑣2
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TABLE 3 

Established Results from Deduced Axioms 

Case 𝜇𝑇 𝜎𝑇
2 

Uncensored Maximum Likelihood Estimate 

𝑒𝑥𝑝 (𝜇̂ +
1

2
𝜎̂2) 

[𝑒𝑥𝑝(𝜎̂2) − 1]𝑒𝑥𝑝(2𝜇̂ + 𝜎̂2) 

Bayesian Estimate 

𝑒𝑥𝑝 [
𝑢𝜎2 + 𝑣2 ∑ 𝑙𝑜𝑔𝑡𝑖

𝑛
𝑖=1

𝜎2 + 𝑛𝑣2

+
1

2
(

𝜎2𝑣2

𝜎2 + 𝑛𝑣2
)] 

[𝑒𝑥𝑝 (
𝜎2𝑣2

𝜎2 + 𝑛𝑣2
)

− 1] 𝑒𝑥𝑝 [2 (
𝑢𝜎2 + 𝑣2 ∑ 𝑙𝑜𝑔𝑡𝑖

𝑛
𝑖=1

𝜎2 + 𝑛𝑣2
) +

𝜎2𝑣2

𝜎2 + 𝑛𝑣2
] 

TABLE 4 

Simulation Results 

Case 𝜇̂ 𝜎̂2 

Uncensored Maximum Likelihood Estimate 

2.923 0.217 

Bayesian Estimate 

2.8014 0.0416 

4.  CONCLUSION  

In conclusion, this research has proposed and implemented a Bayesian alternative estimation procedure on the log-normal 

survival distributions with which the parameters, 𝜇 and 𝜎, have been estimated under uncensored circumstances, without 

covariates. From the estimated parameters, two axioms have also been deduced about the mean and variance of the survival 

time. The results of the study showed that one could obtain the parameter estimates of 𝜇 and 𝜎, via maximum likelihood 

estimation as well as Bayesian estimation procedures under uncensored circumstance; it also confirmed that parameters of 

the log-normal distribution existed whether through MLE or Bayesian procedure, under uncensored circumstances, 

especially for the case of a standard normal prior. 
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