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ABSTRACT 

One of the dangers of the increasing complex malware is the fact that new forms of cybersecurity protection should be created 

continuously. This report takes a look into how dynamic analysis, especially sandboxing has become a mandatory necessity in the 

detection of threats in the modern world, tracing its history dating back to an entry level analysis to complex threat hunting. It throws 

some light on how Artificial Intelligence (AI) and Machine Learning (ML) transform the methods of malware detection and enters the 

new level of the signature-based malware detection. The most relevant advanced developments of research, which relied on AI-assisted 

intrusion detection using sandboxing techniques, and literatures reviewed include emulated system artifacts and symbolic execution 

techniques. The other epic tragedies that this paper addressed include adversarial AI evasion, the insatiably broadening performance 

disparity between a regulated and real-world environment, and the fact that data quality and explainability are far greater hurdles than 

anticipated. In addition, it deals with the domain-specific application of these technologies within the sphere of the cybersecurity of the 

Industrial Control Systems (ICS). This paper has critically looked at the synergistic union between the AI/ML method and the malware 

sandboxing tool with the current problems, and what future research directions should be taken in a bid to overcome the challenge 

protecting cyber space against an opponent that is constantly evolving and globally becoming touchier than ever before. 
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1. INTRODUCTION 

The era of digitalization has been characterized by an unprecedented rise of malware and malware is being found out every 

day and they are posing a threat to people, businesses and the infrastructure of nations on a daily changing and regular 

basis. The limitation of traditional signature-based detection is that they are not as effective when dealing with polymorphic, 

metamorphic and zero-day new malware they are specifically developed to avoid detection. The increasing level of 

sophistication of malware directly explains the need to change towards more dynamic and intelligent modes of detection 

as opposed to the older paradigms of static and signature-based detection. The financial cost of data breaches and the fact 

that the volume of new malware samples pales in comparison to the scale of it nowadays, with the AV Test Institute 

recording 450,000 new malware and potentially unwanted applications on a daily basis in 2022, and overall malware more 

than doubling between 2018 (450 million) and 2022 (970 million), reminds how necessary versatile and evolving are the 

detection methods (Liu, 2022). The ensuing cybersecurity arms race has thereby created a persistent game to react to the 

types of tricks criminals are using and offer appropriate protection.    

Through sandbox environments in dynamic analysis, this has become key in achieving the real-life behavior of suspicious 

files by running them in a contained and controlled environment (Kaya, 2025). The method is important in solving the 
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issue of obfuscation and interpreting the interactions at runtime that would be out of the scope of the static analysis. 

Sandboxes allow one to monitor system calls, network traffic, filesystems, and registry changes and supply critical 

information about how malware works (Guven, 2024). Switching and sandboxing of dynamic analysis is also one of the 

trends of behavior detection. This transition has been motivated by the poor performance of a static approach, which proves 

deficient against more malicious, slippery malware and thus the cybersecurity community is driven to be concerned with 

what malware does and not what it appears to be.    

Artificial Intelligence (AI) and Machine Learning (ML) are becoming increasingly popular as useful assets that help to 

elevate the levels of malware detection, classification, and prevention (Kaya, 2025). They provide instruments of automated 

pattern recognition, anomaly detection and learning capability across large amounts of data therefore providing a way to 

detect malicious behaviors that cannot tall within the traditional rule-based systems. The use of AI is also limited to 

enhancing the quality of the analysis and increasing its accuracy in the fast-changing environment of threats. The number 

of new malware being detected is way too large and human analysis is thus not a viable option due to inherent flaws. Such 

automation and learning are the capabilities that AI and ML can provide, to process data of such volumes and respond to 

new threats as progressive and unpredictable, and thus become key elements (not auxiliary ones), of contemporary 

cybersecurity (Gupta, 2020). The incorporation of AI/ML is not just an addition to the improvement of scalable and 

adaptive cybersecurity services in case of excessive amounts of data and quickly altering threats.    

This paper gives an interdisciplinary, in-depth examination and in-depth criticism of the synergistic combination of 

malware sandboxing with AI/ML. It will also discuss the current concepts/visions of sandboxing, how AI/ML algorithms 

may be used to detect pathogens in numerous ways in addition to the current limitations that continue to hinder their 

widespread usefulness. In detail, the following points will be addressed in this paper: the development of the sandbox 

technology and related analytical methods; the range of AI/ML models used to detect and classify malware and comments 

on Explainable AI; the serious constraints and challenges, especially the so-called adversarial AI and the performance gap 

of approaches in practice; the importance of high-quality malware repository and quality feature engineering; and 

application and peculiarities of the industrial control system protection. This report aims to propose the future lines of study 

and disperse important developments and ongoing challenges to strengthen cyber-shelter due to the ever-changing nature 

of the threats of the malware world, through a synthesis of recent literary works. 

2. LITERATURE REVIEW 

2.1 Artificial Intelligence-Enhanced Malware Sandboxing 

The use of malware sandboxes has developed and progressed along the way, having become a more complex infrastructure 

of high-class malware hunting. The principle that they are based on is the ability to create a controlled and isolated 

environment to safely run suspicious code and to study its behavior in a safe manner without touching the host system. It 

is required to isolate so as to bring into the fore dangerous functionality that is either dormant or hidden in the analysis of 

the path when the path is analyzed at the static analysis. A comprehensive account is provided by Debas et al. (2024), 

though such concerns like tracing the development of sandboxes and emphasising the beneficial aspect of sandboxes in 

constructing a safe and engaging environment of a profound analysis of malicious code is mentioned. Rahul et al. (2024) 

also explain why they are important, how they are used, and how to derive meaningful information using the sandboxes, 

since they keep a record of the system calls, network interactions, and file system and registry modifications. The idea of 

sandboxes moving towards complex threat hunting can be specifically explained by the growing complexity of the malware 

and malware evasion techniques. When malware became even better at concealing what malware is, sandboxes have 

become increasingly real and dynamic to get the malware to show its real intentions.    

Dynamically analyzing in sandboxes is very dependent on finding a suitable feature within the observed behaviors. Guven 

(2024) emphasizes the process of deriving the features of network traffic logs (pcap files) acquired in the sandbox that are, 

in their turn, interpreted as malware by the machine learning models. That indicates the value of the network level indicators 

in behavior detection. In addition to network logs, Liu et al. (2022) mention the role of improving sandboxes by creating 
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realistic system artifacts with the help of an emulation-based system called UBER. It has the aim of making the sandbox 

environment look and feel more like the system of a real user, and in that way luring evasive malware into running its 

complete malicious code. This would enhance fidelity of honeypots and sandboxes making it look more like real time user 

behavior. The emphasis on the point of view dubbed as the realistic system artifacts and the emulated user behavior 

demonstrates the more sophisticated knowledge of the anti-analysis power of the malware. It means that, nowadays, 

malware willingly fingerprints its execution context, and hence, successful sandboxing involves taking an aggressor 

approach on the model to avoid being caught by fingerprints techniques. It is also more general regarding design philosophy 

of future sandboxes stating that they would need to actively mislead malware instead of passively monitoring it.    

Although sandboxing can be effective it can only do so much and in particular against the malware which prevents 

sandboxing by detecting and avoiding the virtualized environments. Researchers are considering add-on strategies in order 

to overcome these weaknesses. Vouvoutsis (2024) offers to implement symbolic execution frameworks along with the 

sandbox execution to facilitate identifying new kinds of malware. The symbolic execution provides an insightful analysis 

of the malware code by examining every execution pathway found, and in this manner, can be employed to provide more 

informative signatures that will be resistant to polymorphic malware. That is not the case with sandboxes since there always 

is only one execution path at a time. The other technique which is essential is the Dynamic Binary Instrumentation (DBI) 

which executes and analyses evasive malware and gets the actual behavior of it, giving you complete control over files 

instrumented. The key strength of DBI discussed by Gaber et al. (2024) is that it can extract real, top-quality characteristics 

of evasive malware, as well as its overall resistance to anti-analysis techniques, proving resistant most of the time but can 

be overcome when using anti-instrumentation techniques which are effective against it but possess a countermeasure. DBI 

is opined to be better at extracting real features than either static analysis or sandboxes (though it has been demonstrated 

that sandboxes can be easy beaten by anti-sandboxing methods, and static analysis is also limited by use of obfuscation). 

Symbolic execution and DBI underline that traditional sandboxing is conceptually rather limited because it cannot ensure 

the code coverage and evasion technique bypass. This implies that the use of sandboxing alone is not perfect and should 

be blended with more thorough ways of analysis that should lead to powerful detection, another optimization approach to 

complete analysis.    

2.2 The Artificial Intelligence (AI) with Machine Learning (ML) in Malware Detection 

Machine Learning (ML) and Deep Learning (DL) AI was successfully implemented in most areas of malware detection. 

According to the systematic review, Gaber et al. (2024) state the main progression regarding its features; they mention 

such common ML algorithms as Logistic Regression (LR), K-Nearest Neighbor (KNN), Naive Bayes (NB), Random Forest 

(RF), and Support Vector Machine (SVM). Out of these, Gated Recurrent Units (GRU), Long Short-Term Memory 

(LSTM), Deep Belief Network (DBN), Deep Neural Network (DNN), and Convolutional Neural Network (CNN) DL 

architectures are some of the examples. Representatively, SVM, LSTM, and CNN-LSTM are effective in the case of 

Android applications (Alkahtani 2022, 100% on CICAndMal2017, 99.4% on Drebin). Seneviratne et al. (2022) present 

SHERLOCK, a deep learning model of self-supervision based on the architecture of Vision Transformer (ViT) that is used 

to detect malware by binary representation of image. Ensemble learning and hybrid models are also on the rise to implement 

superior detection and interpretability. The variance in the applied AI/ ML algorithms displays an ongoing quest to obtain 

the optimum models capable of dealing with the complexity and the volume of the malware data. This evolution of ML 

models through deep learning and into top-specific architectures (ViT) can be explained by the fact that more abstract and 

subtle patterns should be found in strongly obfuscated or new malware, and it leads to the fact that the complexity of 

malware increases the complexity of the AI models.    

The systematic reviews conducted by Gaber et al. (2024) and Berrios et al. (2024) present relevant pieces of information 

that are crucial to the area. Gaber et al. mention that even though AI models are very promising, they can hardly be 

optimized to protect against novel, evasive and advanced malware due to their sensitivity to the quality and quantity of 

training features. They further talk of the impact of malware mechanism (malware is evasive, new, AI-aided) complexity 

on both the static and the dynamic analysis and inefficiency of the available malware data sets. Berrios et al. corroborate 

the fact that ML and DL far exceed traditional methods when it comes to enhanced malware and ransomware detection 
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with the more advanced techniques demonstrating increased accuracies of finding zero-day malware types and 

ransomware. Nevertheless, they also identify the fact that some models are based on a particular collection of data which 

is not very representative of real-life diversity of threat activity, so generalization issues may arise. Despite having achieved 

high accuracies, deep learning and hybrid approaches have challenges in terms of cost and feasibility of calculation, 

interpretability and resistance to adversarial attacks. There is a stark difference between these high accuracy rates reported 

in research (they are frequently 90-99%) and performance problems in real life data and this leads to a high performance 

gap. Such indicates that the results of the research conducted in controlled conditions do not necessarily apply when it 

comes to the act of actually implementing them, which means a reviewing of the approach to evaluation is necessary, or 

some prioritization of robustness instead of the highest accuracy possible.    

The dependence on the so-called black-box aspect of most of the AI models is a major challenge to cyber security because 

it complicates trust and the large-scale acceptance of the models. Galli (2024) introduces an Explainable AI (XAI) 

framework in behavioral malware detection and explains the approaches such as SHAP, LIME, LRP and Grad-CAM in 

making the decisions of AI models easily understood. XAI is transforming AI-related malware detection because it helps 

to demystify AI through the causal interpretation and comprehensibility of an AI process by reducing distrust, and enabling 

wide adoption. Such transparency is significant since it can allow the security analysts to know why a decision was chosen, 

which permits the incident response as well as model adjustments. The fact that XAI is emphasized means that there is a 

maturing industry in which technical performance (accuracy) is no longer enough. The right to question, to someone to be 

responsible and human beings to make interpretations on AI actions and take appropriate actions are also rising in 

importance. This is of a wider meaning to regulatory compliance and also human-AI collaboration model in cybersecurity, 

or systems have to not only be well performing but easily understandable to the human operators.    

2.3 Threats and Constraints to the AI-Based Malware Detection and the Sandboxing 

The development of adversarial malware binaries is a serious and increasingly difficult problem as such binaries are 

intended to disguise themselves against AI/ML detection. In lieu of this, Kolosnjaji et al. (2018) work on understanding 

how vulnerable deep networks trained on raw bytes are toward evasion attack, suggesting a gradient-based evasion attack 

that skews at-most 1 % of the bytes in a malware to attain a high probability of evasion whilst retaining functionality. The 

vulnerability illustrates a crucial weakness in which minor and in most cases barely noticeable transformations are 

exploitable by the advanced AI models. Malware developers are also increasingly putting AI frameworks into use, and 

developing what are dubbed as AI-powered malware, where the malware itself is reputed to be more evasive, and 

possessing a level of targeted attack where payload and trigger conditions are hidden using neural networks. It could be 

that such malware is immune to the analysis since the payload is encrypted and only decrypted on detection of the target 

and with the encryption key enclosed inside the black-boxes neural network. This new threat is also outlined in the Check 

Point Blog, and it points out the necessity of avant garde AI derived security systems to resist AI generated malware. The 

maturity of malicious AI and malware that improved with the help of AI is a predictor of the increase in cybersecurity in 

terms of AI arms race. There is a vicious cycle of the attackers using AI to counter AI defenses, and in turn, the good AI 

has to become more powerful and adaptive. This is a direct causal relationship in which developments of defensive AI 

would be the cause of developments of offensive AI, and the other way round.    

One of the detailed issues that a recent study on the Kaya (2025) reported is that the proposed ML-based behavioral 

malware detection technique is by no means a silver bullet in practice. It is the first work that quantifies the performance 

on endpoints, meaning that it shows a large gap between performance during the training phase using sandbox traces (where 

most of the models claimed to achieve over 90% accuracy) and results when deployed on endpoint traces (with 20-50 True 

Positive Rates). The primary factors affecting this performance degradation are: distribution shift, such that there are 

massive differences in the execution traces between controlled sandboxed environments and diverse and uncontrolled real-

world endpoint environments meaning that malware may be dissimilar due to environmental factors such as the hardware 

or network status; label noise, such as label errors or imprecision in the labeling malicious and benign samples in training 

datasets; and spurious features, unlikely to generalize to the real world because they appear distinctive in controlled settings, 

even though in real-world settings of diverse environments, they are not discriminating of the malicious A further widening 
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of this gap is introduced by the presence of malware that has specifically been created in such a way as to not be detected 

in the situation where a system is not in operation under controlled conditions within a sandbox environment. The 

performance discrepancy is one of the possible flaws of the adopted AI/ML assessment strategies in the field of 

cybersecurity. This means that a lot of the claimed academic performance is not directly applicable (or may want to be 

directly applicable) to real-world security, and a paradigm shift needs to be adopted to train and test models directly on 

endpoints data. It is an urgent wake-up call to the field of research to be more in line with reality in the field of operation.    

The restriction is also practical as certain AI models will demand a lot of computing resources and malware will constantly 

change. Great accuracy models can be very demanding in computation requirements as most deep learning models demand 

high computational consumption which is hindering deployment to space-limited environments. Model consistency is also 

threatened by the dynamism of malware which includes the possibility of behaving differently depending on the context 

or time. In addition to this, dynamic analysis is effective, but computationally more intensive, and slower than static 

methods. The computational complexities and resource requirements of an advanced AI model and the evolutions of the 

malware are the practical limitations to the effective deployment of the AI model in a computer system. This indicates an 

opportunity to study lightweight, computationally efficient, and flexible AI structures, and the techniques that are capable 

of dealing with the idea drifting and behavioral fluctuations in real-time to provide their continued efficiency in any 

operational environment.    

2.4 Malware Collections, Quality of Datasets and Feature Extraction 

One of the biggest bottlenecks in the process of developing malware detection based on AI is the challenge in developing 

open public collections of clean and malicious files. Desire to be legal, copyright, security liability can also encourage 

researchers to use small, closed, curated and usually unbalanced data, which is a hindrance to growth and reproducibility 

of research. What this data can cause is poor AI models that only succeed when applied to certain data with overfitting, 

and has no chance of being generalized. Large, versioned, continuously updated open repositories of linked Dynamic 

Binary Instrumentation (DBI) frameworks are highlighted to be the future research potential in terms of extracting the 

authentic features thereby (Liu, 2022). Most of the limitations observed in AI-based malware detection, particularly the 

performance disparity within the real world, have their root cause in lack of high-quality, varied and openly accessible 

datasets. It is a systemic problem of the research community as a whole because the effectiveness of accuracy and other 

model performances undoubtedly relies on the upper quality and authenticity of training characteristics.    

Nonetheless, there are a number of publicly available data. Having the five publicly accessible datasets that have been 

considered by Gaber et al. (2024), they include EMBER, which features the extraction of the feature vector out of 1.1 

million PE files without intact ones and only static analysis, BODMAS that consists of very recent and categorized 

malware, timestamps, intact PE files to study changes over time, SOREL-20M that has 20 million samples including the 

extraction of the feature vector and disarming malware files, VirusShare that consists of over 55 million live malware files 

S. Considering the malware detection datasets the references to which are presented by Berrios et al. (2024), one will single 

out R2-D2 (Android apps as RGB images), CIC-InvesAndMal2019, CICMalDroid 2020, Microsoft Malware (2015 

competition), Malimg (visualization-based), Drebin, Malgenome (Android), Edge-IIoTset (IoT network traffic), NSL-

KDD, CICIDS-2017, and Bot-IoT. Although there are a lot of datasets, they have various limitations (e.g., the lack of 

dynamic features, intact files, imbalance, or out of date), which points out to a big disconnect when it comes to the actual 

ideal high-level AI research. This provides a possibility of creating new ways of dataset creation, potentially incorporating 

a usage of generative AI in solving data scarcity and abundance issues.    

The feature extraction, engineering, processing and feature selection are important and very problematic processes because 

of anti-analysis techniques and imbalanced datasets. According to Gaber et al. (2024), some of the major discriminative 

features that can be tracked down to detect malware are Windows registry interactions (tracking the malware persistence), 

CPU registers (behaviors at the byte level), file interactions (creation, deletion, modification), API and system calls 

(characteristic of PE/DLL files), frequency and order of the opcodes, conversion of the malware files and network traffic 

to images, and network traffic details (IP, ports, and protocols). Berrios et al. (2024) also classify the techniques of feature 
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extraction by N-gram, Graph-based, Vision-based (converting binaries to images), and Hashing techniques. Generalizable 

AI models would be most relevant to malware development by understanding optimal syntactic and semantic 

characteristics of the malware language and characteristics that can separate malware and ordinary software. It is observed 

that models with accuracy above 99 % frequently employed dynamically derived characteristics such as API calls, network 

traffic, opcode streams and memory dumps. The performance of the AI models will depend on that extracted or rather the 

characteristics and relevance. The issue is that, it is hard to extract features which are not based on malware evasiveness 

but resistant to obfuscation and anti-analysis, which is evidence of the interactions being between the evasiveness of 

malware and feature engineering process being complex.    

2.5 Protection of Industrial Control System (ICS) 

Critical infrastructure such as power grid and water treatment systems are run using what is known as Industrial Control 

Systems (ICS), and malware and cyberattacks are being used to compromise ICS. Industrial communication protocols are 

vulnerable by virtue of the absence of implementations of any security schemes. It is in such delicate surroundings that AI 

and ML are being applied to assist in detecting intrusion and malware analysis. Umer et al. (2022) provide a review of 

applying ML in ICS intrusion detection applications on a network level and on the level of physical processes. Gupta et al. 

(2020) focus on the training of cybersecurity professionals on the AI/ML application to malware analysis towards 

safeguarding critical infrastructure. The importance of using AI-stimulated cybersecurity in ICS has been a high-stakes 

field of application because the result of a cyberattack could lead to disastrous effects physically. This realm brings up very 

different issues of manually operating in real-time, legacy systems, and safety-critical constraints that are completely 

different than the more common IT settings, and as such specialized solutions are essential.    

Varghese et al. (2022) proposes a digital twin framework of ICS security, and the illustration used is of real-time intrusion 

detection using stacked ensemble of classifier-based classifications on the basis of AI. Realtime monitoring of digital twins, 

the analysis of threats, and the simulation of attacks in an attack scenario within a safe controlled environment is an answer 

to the challenge of testing attacks on live ICS. They achieved higher F1-Score and accuracy of their stacked ensemble, and 

the detection and classification speed of intrusions is 0.1 second. In Kravchik and Shabtai (2018), the efficiency of 

Convolutional Neural Networks (CNNs) is discussed to detect anomalies in ICS that proves to be an efficient way of 

detecting cyberattacks with minimal false positive results. They used statistical deviation of predicted versus observed 

values as their method, which achieved 31 attacks on 36 on a Secure Water Treatment testbed, higher than recurrent 

networks, demonstrating that CNNs are simpler, smaller, and faster when time series have to be predicted in ICS. 

DigitalTwin and CNNs can present novel methods to address the very challenge of ICS security, namely, safe simulation 

environment and effective anomaly detection. The problem solved in the first place in this solution is the inability to test 

on live systems and the necessity to deploy high-performance and low-latency detection to sensitive infrastructure.    

Industrial threats Commercial products that apply AI to a greater extent in the field of the threat Industrial AI-based threat 

detection related products include MetaDefender Sandbox AI Threat Detection, FortiGuard AIBased Inline Malware 

Prevention Service, and Zscaler Cloud Sandbox. They exploit the real-time protection against unknown threats built on the 

basis of AI, thorough threat filtering, and zero-day attacks prevention. However, But with threats ever-changing, the latest 

frontier of malware technique is the AI Evasion. On a Check Point Blog one may read about the new threat of AI-spawned 

malware that has the ability to escape traditional sandbox detection mechanisms and focuses on the necessity of modern 

AI-based industrial-specific security solutions. In addition, Telefonicatech (2024) takes into consideration AI sandboxes 

to test AI modelling and securing them as they are also durable against hacking attacks and secure to operate them in 

industry. The recent appearance of commercial AI-based ICS sandboxes points to the fact that companies finally 

understood that sophisticated protection is highly necessary in this field. At the same time, AI-based malware that can 

exploit these systems is a considerable threat that will occur in the future, taking the AI arms race to deeply sensitive levels.    
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Table 1: Comparative Overview of Key Research on AI-Enhanced Malware Detection 

S/

N 

Authors 

& Year 
Paper Title 

Problem 

Addressed 
Method Used Limitation Findings 

1 
Guven et 

al. (2024) 

Dynamic 

Malware 

Analysis 

Using a 

Sandbox 

Environment, 

Network 

Traffic Logs, 

and Artificial 

Intelligence 

Malware 

classificatio

n based on 

network 

traffic 

Feature extraction 

from pcap, ML/AI 

models 

Not explicitly 

detailed in 

summary 

Comprehensive 

approach to 

dynamic 

malware 

analysis; ML/AI 

models 

developed for 

classification 

2 
Liu et al. 

(2022) 

Enhancing 

Malware 

Analysis 

Sandboxes 

with 

Emulated 

System 

Artifacts 

Malware 

evasion of 

sandboxes 

Emulation-based 

system (UBER) to 

generate realistic 

system artifacts 

Not explicitly 

detailed in 

summary, but 

implies malware 

evasion 

Enhances 

sandboxes by 

generating 

realistic system 

artifacts to 

improve fidelity 

3 
Debas et 

al. (2024) 

Unveiling the 

Dynamic 

Landscape of 

Malware 

Sandboxing: 

A 

Comprehensiv

e Review 

Evolving 

malware 

analysis and 

threat 

detection 

Review of sandbox 

progression, AI/ML 

integration, counter-

evasion tactics 

Ongoing evasive 

malware 

detection, need 

for 

comprehensive 

datasets, 

adaptability to 

zero-day 

Traces 

maturation of 

sandbox 

technology from 

basic analysis to 

advanced threat 

hunting 

4 
Rahul et 

al. (2024) 

Malware 

Analysis 

Using 

Sandbox 

Combating 

sophisticate

d malware 

Sandboxing, static 

and dynamic analysis, 

recording system 

calls, network 

activity, file/registry 

changes 

Not explicitly 

detailed in 

summary 

In-depth 

exploration of 

sandboxes, their 

significance, 

working 

principles, and 

best practices 
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5 
Vouvoutsi

s (2024) 

Beyond the 

Sandbox: 

Leveraging 

Symbolic 

Execution for 

Efficient 

Malware 

Detection 

Detecting 

new 

malware 

strains 

efficiently 

Complementing 

sandbox with 

symbolic execution 

frameworks 

Not explicitly 

detailed in 

summary 

Complements 

sandbox 

execution with 

symbolic 

execution for 

efficient new 

malware 

detection 

6 
Gaber et 

al. (2024) 

Malware 

Detection 

with Artificial 

Intelligence: 

A Systematic 

Review 

Key 

development

s & core 

challenges 

in AI 

malware 

detection 

Systematic review of 

AI in malware 

detection across 5 

aspects 

Malware 

sophistication 

(evasive, novel, 

AI-powered), 

dataset quality, 

analysis tool 

limitations 

Comprehensive 

review of AI 

developments 

and challenges; 

DBI least 

impacted by anti-

analysis 

7 
Galli 

(2024) 

Explainability 

in AI-based 

Behavioral 

Malware 

Detection 

Lack of 

transparent 

explanations 

in AI 

models 

XAI framework 

(SHAP, LIME, LRP, 

Grad-CAM) 

Global 

interpretability 

challenges, lack 

of comprehensive 

context, limited 

applicability 

Proposes XAI 

framework; XAI 

revolutionizing 

AI malware 

detection by 

increasing 

transparency 

8 
Song et al. 

(2024) 

A Study of 

the 

Relationship 

of Malware 

Detection and 

Artificial 

Intelligence 

Combating 

various 

types of 

malware 

AI implementation 

for malware detection 

Lack of 

transparent 

explanations, 

dynamic analysis 

delays, evasion 

techniques 

Explores AI for 

malware 

detection; some 

models achieve 

up to 99% 

accuracy with 

90% consistent 

explanations 
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9 
Alkahtani 

(2022) 

Artificial 

Intelligence 

Algorithms 

for Malware 

Detection in 

Android 

Applications 

Mobile 

malware 

detection 

efficiency 

SVM, KNN, LDA, 

LSTM, CNN-LSTM, 

Autoencoder 

ML cannot cope 

with huge data 

traffic; DL lacks 

optimization; 

some models not 

appropriate for 

complex data 

SVM (100% on 

CICAndMal2017

), LSTM 

(99.40% on 

Drebin) achieved 

high accuracy 

10 
Berrios et 

al. (2024) 

Systematic 

Review: 

Malware 

Detection and 

Classification 

Using AI 

Techniques 

Current 

trends and 

new 

methods for 

malware 

detection 

Systematic review 

focusing on ML, DL, 

hybrid models 

Generalization 

challenges due to 

specific datasets; 

computational 

cost, 

explainability, 

adversarial 

attacks 

ML/DL 

outperform 

traditional 

methods; 

advanced 

techniques show 

superior 

accuracy for 

zero-day 

11 
Pfeffer et 

al. (2017) 

Artificial 

Intelligence 

Based 

Malware 

Analysis 

Volume, 

velocity, 

complexity, 

obfuscation 

of malware 

MAAGI system 

(biologically/linguisti

cally inspired), 

static/dynamic RE, 

hierarchical 

clustering, lineage 

analysis, component 

ID, trend prediction, 

functional analysis 

Component 

uniqueness 

assumption, lack 

of data 

flow/temporal 

info, 

unpredictable 

attackers 

MAAGI shows 

promising results 

in clustering, 

component 

identification, 

lineage, and 

trend prediction 
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12 

Seneviratn

e et al. 

(2022) 

Self-

Supervised 

Vision 

Transformers 

for Malware 

Detection 

Detecting 

previously 

unseen 

malware 

from 

unlabeled 

data 

SHERLOCK (self-

supervision, ViT 

architecture, image-

based binary 

representation) 

Not explicitly 

detailed in 

summary 

Experimental 

results using 1.2 

million Android 

applications 

13 

Kolosnjaji 

et al. 

(2018) 

Adversarial 

Malware 

Binaries: 

Evading Deep 

Learning for 

Malware 

Detection in 

Executables 

Vulnerabilit

y of deep 

networks to 

evasion 

attacks 

Gradient-based attack 

(modifies <1% bytes) 

Preserving 

functionality, 

avoiding syntax 

breakage, 

detecting/sanitizi

ng added content 

Achieves high 

evasion 

probability with 

<1% byte 

modification 

14 

Varghese 

et al. 

(2022) 

Digital Twin-

based 

Intrusion 

Detection for 

Industrial 

Control 

Systems 

IDS 

deployment 

challenges 

in ICS, lack 

of testbeds 

Digital twin 

framework, stacked 

ensemble classifier, 

process-aware attack 

scenarios 

Unbalanced 

datasets (more 

normal than 

anomalous 

samples) 

Stacked model 

outperforms 

previous 

methods (F1-

Score, accuracy), 

near real-time 

detection (0.1s) 

15 

 Kravchik, 

et al. 

(2018) 

Detecting 

Cyberattacks 

in Industrial 

Control 

Systems 

Using 

Convolutional 

Neural 

Networks 

Detecting 

cyber 

attacks in 

ICS 

Anomaly detection 

via statistical 

deviation, 1D CNNs 

Not explicitly 

detailed in 

summary 

Detected 31/36 

attacks with 3 

false positives; 

1D CNNs 

outperform 

RNNs for time 

series prediction 

in ICS 
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16 
 Gupta et 

al. (2020) 

AI-Assisted 

Malware 

Analysis: A 

Course for 

Next 

Generation 

Cybersecurity 

Workforce 

Shortfall of 

AI/ML 

trained 

cybersecurit

y 

professional

s 

Lab-intensive 

modules on CTI, 

malware analysis, 

classification, 

adversarial ML, 

APTs 

Malware 

sophistication, 

classification 

complexity, API 

rate limits, 

resource 

constraints in labs 

Development of 

comprehensive 

course 

curriculum to 

bridge talent gap 

3. FINDINGS 

The reviewed works clearly show that AI/ML and malware sandboxing have a strong synergy, leaving the static model of 

signature-based detection in favor of the dynamic model, which is based on observation (behavior). Such a movement is a 

major paradigm change in malware detection where malicious activities have become pro-active and intelligent in nature 

and based on behavior. This kind of transition is blamed on the sophistication of malware and inadequacy of the past 

approaches to it. An important progress involves the creation of advanced sandbox functionalities such as emulated system 

artifacts (UBER system) to mislead presumably evasive malware and the use of complementary methods like symbolic 

execution and Dynamic Binary Instrumentation (DBI) to identify more pronounced pieces of information. The use of a 

wide range of different AI/ML models, such as SVM and RF and the more sophisticated ones, like LSTM, CNN, and ViT, 

has substantially increased detection and classification rates, especially on new and polymorphic malware. Also, the 

development of Explainable AI (XAI) systems is another big step on the way to developing trust and comprehensibility in 

these complex systems, which is the problem of a black box.    

Most of the AI/ML algorithms display good performance but it is not applicable in all settings. In the case of Android 

malware, SVM models, as well as LSTM, have displayed a remarkably high accuracy of 100 % and 99.40 % respectively 

on certain sets of data such as CICAndMal2017 and Drebin. DNN and CNNs are also deep learning models that have 

shown an improvement in malware detection in Windows using both static and dynamic features compared to the traditional 

ML. However, the article ML-Based Behavioral Malware Detection Is Far From a Silver Bullet shows that the difference 

between the results obtained by sandbox datasets and truly harmful malware is chilling since its True Positive Rate dropped 

more than 10 times (20-50%) higher when deployed on real-world end-point traces due to distribution shift, label noise 

and spurious features. This gives rise to what may be one of the greatest shortcomings of the existing models and 

questioning their applicability and validity outside of controlled conditions. The difference between this contextual 

performance and generalization challenge that has been observed means that despite AI/ML providing tools of such power, 

the ultimate goal of delivering strong and generalizable detection under the different operational circumstances is a 

remarkably challenging task. Achieved accuracies of AI/ML models are subject to context and do not necessarily generalize 

to varied and realistic inferences, which implies that performance is highly influenced by the environment where the 

algorithm was trained and tested. 

An ongoing AI arms race can be found in the cybersecurity landscape as the development of AI-based defensive technology 

is matched by the emergence of adversarial AI and AI-powered malware aimed at devising methods that cannot be detected. 

Attacks based on adversarial examples have the capability to fool deep learning models without significant changes, and 

malware applications through the use of AI have the ability to conceal their payloads until certain conditions have been 

satisfied and thus hard to analyse. Besides such adversarial threats, deployment logistics in actuality are not very easy. One 

of the crucial concerns is the problem of the distribution change and environmental differences that existed between the 

values of sandbox and endpoint performance. The complexities in the implementation of deep learning models are also 

inflated by the fact that some deep learning models are computationally intensive and that malware is dynamic and always 
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evolving. The real issue is the availability of rich, balanced and authentic data sets of malware, which is a big bottleneck 

on its own and this causes the model to be fragile and not portable. These difficulties are not independent of each other but 

are interrelated in the process of creating a feedback loop This level of malware sophistication is what causes the 

advancement of AI to rise to a higher level and this is what has led to the development of adversarial AI which continues 

to increase in depth and depth. This fluidity entails that the implementation of changes in the real-world is characterised 

by in-built complexity, and the process necessitates constant adjustments.    

The weakness of static analysis when it comes to obfuscated malware has driven the significance of behavioral analysis 

which is the process of monitoring the actions of malware as it runs on the system to reveal its real purpose. It is more 

difficult to object to such an approach when it comes to such veiling on the code level. Also, the opacity (or black-box) of 

many AI models has necessitated the pressing need of Explainable AI (XAI), which offers transparency and increases the 

level of trustworthiness, elucidating the decisions made by the model. This is crucial to the human analyst who wants to 

take action based on the information produced by AI. Finally, the argument of direct connection between quality and 

authenticity of training features and the performance of the AI models supports the idea that such a practice as the 

development of large and diverse malware collection with an appropriate level of representation is important. Future 

malware detection systems will need to focus on having behavioral analysis, XAI and robust practices on the datasets in 

order to achieve higher success rates. They are the most essential infrastructures behind succeeding in the establishment of 

trustful, competent, and flexible AI-powered cybersecurity systems. The repetition of these issues shows that they are not 

just the small changes that can be made but essential ones to achieve a good high in the field.    

3.1 Detection Accuracies and Performance 

In many cases, the AI/ML models have also been demonstrated to be accurate on detecting in controlled environments. A 

case in point is that SVM on the CICAndMal2017 dataset achieved an accuracy of 100 % when detecting Android malware 

and LSTM had an accuracy of 99.4% when detecting Android malware on the Drebin dataset. Deep Neural Networks 

(DNN) and Convolutional Neural Networks (CNN) achieved an outstandingly high accuracy levels of 98.9% and 96.6% 

respectively by using static and dynamic feature representations in Windows malwares. Moreover, ensemble classifiers 

have achieved very high accuracy of 99 % with 90 % consistency on dynamic malware dataset explanations. These results 

indicate that AI/ML will be very promising in malicious software detection.    

3.2 The Gap in Performance 

Notwithstanding those great lab-based levels of accuracy, there is also an important methodological gap that we can discern 

when these models are put to use in real life. An empirical analysis of the ML behavioural detection of malicious malwares 

identified an enormous performance decline upon actual deployment to an endpoint detection (where performance was 

measured by False Positive Rate FPR and True Positive Rate TPR). Such sharp contrast highlights the fact that the 

profitability of the studies models might not be train and measured under conditions realistic to the operational environment 

with all its complexity and variety. This implies that the process by which assessment is carried out should also be critically 

re-visited in order to come up with findings that can really be implemented in real-life security scenario.    

The Sandbox Performance: When comparing Cuckoo Sandbox and Process Monitor (Procmon), Cuckoo Sandbox was 

faster (average time on a comparative number of samples was about 530 seconds with Cuckoo compared to 989 seconds 

(highest score) with Procmon) and identified an average sample with a higher level of accuracy (99.35 % average accuracy 

versus 94.48 %) and ROC (0.97 versus 0.91). This implies that there are sandbox environments that are more effective and 

practical in delivering data to be analyzed by means of AI.    

Adversarial Evasion: The performance of the AI models is antagonistic to attacks. Indeed gradient-based attacks have 

proven evasive to detection by deep learning using only around 1 byte of modifications with a high probability of evasion. 

The digital artefact proves the fact that the current AI systems are fragile against sophisticated informed attacks.    
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ICS Detection: Digital twins of stacked ensemble classifiers in ICS world have outperformed F1 -Score and accuracy of 

invading detection, in our implementation of the human in the loop (HITL) in real-time environment, we recorded average 

latency determination\ delay of 0.1 second. Further, we found that 1D Convolutional Neural Networks identified 31 out of 

36 cyberattacks in ICS with low false positives and therefore, seems to be an effective neural network that outperforms 

recurrent networks in specific contexts. The possible implications of these findings are that tailored AI can prove to have 

a very big impact in small-scale, high-stakes contexts.    

MAAGI System: The MAAGI system, presented by Pfeffer et al. (2017) and based on the methods inspired by biology, 

promises certain results in a number of areas. It overcame the challenge of hierarchical clustering as it also offered low 

negative accuracy when compared to batch clustering but at a speed that was much faster (less than an hour compared to 

more than five hours). The system was effective with the identification of shared components in component identification 

by applying the features of gen code and gen semantics. In addition, lineage analysis conducted by it showed high accuracy 

related to lineage reconstruction of malware. Such qualitative results lead to the future potential of novel and 

interdisciplinary forms of analysis of malware.    

The comparison between the very high accuracy rates that are obtained in the laboratory and the real world measure of 

performance which has been lower by far represents an awful methodological gap in the field. It means that more realistic 

assessment criterion and settings should be placed on the priority list of further research to guarantee applicable relevance. 

4. CONCLUSION AND RECOMMENDATIONS 

Contemporary status of AI-aided malware sandboxing is a significant step in the development of security measures in the 

sphere of cybersecurity. There has been an enormous leap forward in the realm of integrating Artificial Intelligence and 

Machine Learning with dynamic analysis techniques and ceasing to rely solely on signature-based approaches to threat 

detection and expanding towards behavioral analysis as a means of enhancing robust threat detection. This ongoing 

research can be summed up by the creation of sandboxes capable of dealing with emulated artifacts of the target system, 

and by blending the related techniques like symbolic execution and Dynamic Binary Instrumentation. Although AI/ML 

models can achieve remarkable accuracies under controlled settings, a combination of challenges that can be described as 

both persistent and interconnected challenges marks the field, namely the growing AI arms race with malware that is 

adversarial in nature and the severe performance discrepancy between lab and in-the-wild endpoints deployments that has 

been noted before. The malware dataset quality and accessibility and a desire to have better explainability in malware tasks 

remains central impeding blocks to overall efficacy and trust. 

In order to contribute to the development of the field and to reinforce cyber defense against the ever-changing land scapes 

of the malware threats, future research are coming forth by focusing on Greater Explainability AI(XAI), Highly Resistant 

to Adversarial AI, Public Quality Datasets and Industry Control System (ICS)-Specific Solutions. 

References 

Alkahtani, H. (2022). Artificial Intelligence Algorithms for Malware Detection in Android Applications. Journal of 

Computer Virology and Hacking Techniques, 18(3), 349–361. https://doi.org/10.1007/s11416-022-00444-7 

Berrios, S., Leiva, D., Olivares, B., Allende-Cid, H. & Hermosilla, P. (2024). Systematic Review: Malware Detection and 

Classification Using AI Techniques. Applied Sciences, 15(14), 7747. https://doi.org/10.3390/app15147747 

Check Point Blog. (2025). AI Evasion: The Next Frontier of Malware Techniques. Check Point Research. Retrieved from: 

https://blog.checkpoint.com/artificial-intelligence/ai-evasion-the-next-frontier-of-malware-techniques/ 

Debas, E., Alhumam, N., & Riad, K. (2024). Unveiling the Dynamic Landscape of Malware Sandboxing: A 

Comprehensive Review. International Journal of Advanced Computer Science and Applications, 15(3). 

https://doi.org/10.14569/IJACSA.2024.01503137 

https://www.google.com/search?q=https://doi.org/10.1007/s11416-022-00444-7
https://www.google.com/search?q=https://doi.org/10.3390/app15147747
https://www.google.com/search?q=https://doi.org/10.14569/IJACSA.2024.01503137


International Journal of Advance Research Publication and Reviews, Vol 2, no 8, pp 303-317, August 2025                                  316
 

 

Fortinet. (2024). FortiGuard AI-powered Security Services counter threats in real-time with AI-powered, coordinated 

protection across your entire attack surface. FortiGuard AI-based Inline Malware Prevention Service. Retrieved from: 

https://www.avfirewalls.com/Fortiguard.asp 

Gaber, M. G., Ahmed, M., & Janicke, H. (2024). Malware Detection with Artificial Intelligence: A Systematic Review. 

ACM Computing Surveys, 56(6), 1–37. https://doi.org/10.1145/3638552 

Galli, A., Gatta, V. L., Moscato, V., Postiglione, M., & Sperlì, G. (2024). Explainability in AI-based behavioral malware 

detection systems. Computers & Security, 141, 103842. https://doi.org/10.1016/j.cose.2024.103842 

Gupta, M., Mittal, S., & Abdelsalam, M. (2020). AI assisted Malware Analysis: A Course for Next Generation 

Cybersecurity Workforce. arXiv. https://doi.org/10.48550/arXiv.2009.11101 

Guven, M. (2024). Dynamic Malware Analysis Using a Sandbox Environment, Network Traffic Logs, and Artificial 

Intelligence. International Journal of Computational and Experimental Science and Engineering, 10(3). 

https://doi.org/10.22399/ijcesen.460 

Kaya, Y., Chen, Y., Botacin, M., Saha, S., Pierazzi, F., Cavallaro, L., Wagner, D. & Dumitras, T. (2025). ML-Based 

Behavioral Malware Detection Is Far From a Solved Problem. Cryptography and Security. Available at: 

https://doi.org/10.48550/arXiv.2405.06124 

Kolosnjaji, B., Demetrio, D., & Schiele, G. (2018). Adversarial Malware Binaries: Evading Deep Learning for Malware 

Detection in Executables. arXiv. https://doi.org/10.48550/arXiv.1803.04173 

Kravchik, M., & Shabtai, A. (2018). Detecting Cyberattacks in Industrial Control Systems Using Convolutional Neural 

Networks. In CPS-SPC 2018 - Proceedings of the 2018 Workshop on Cyber-Physical Systems Security and PrivaCy, co-

located with CCS 2018, 72–83. Association for Computing Machinery. https://doi.org/10.1145/3264888.3264896 

Liu, S., Feng, P., Wang, S., Sun, K., & Cao, J. (2022). Enhancing Malware Analysis Sandboxes with Emulated System 

Artifacts. Computers & Security, 115, 102613. https://doi.org/10.1016/j.cose.2022.102533 

OPSWAT (2024). MetaDefender Sandbox AI Threat Detection. Retrieved from 

https://www.opswat.com/docs/filescan/datasheet/url-analysis 

Pfeffer, A., Ruttenberg, B., Kellogg, L., Howard, M., Call, C., O'Connor, A., Takata, G., Reilly, S. N., Patten, T., Taylor, 

J., Hall, R., Lakhotia, A., Miles, C., Scofield, D., & Frank, J. (2017). Artificial Intelligence Based Malware Analysis. arXiv. 

https://doi.org/10.48550/arXiv.1704.08716 

Rahul, R.R., Naveen, S., Subhikshan, R. & Tarun, S. (2024). Malware Analysis Using Sandbox. SSRN. 

https://doi.org/10.2139/ssrn.4708146 

Seneviratne, S., Shariffdeen, R., Rasnayaka, S., & Kasthuriarachchi, N. (2022). Self-Supervised Vision Transformers for 

Malware Detection. arXiv. https://doi.org/10.48550/arXiv.2208.07049 

Song, J., Choi, S., Kim, J., Park, K., Park, C., Kim, J., & Kim, I. (2024). A Study of the Relationship of Malware Detection 

and Artificial Intelligence. ICT Express, 10(3), 632–649. https://doi.org/10.1016/j.icte.2024.03.005 

Telefonicatech (2024). AI Sandboxes: Secure Environments for Testing and Protecting Artificial Intelligence Models. 

Retrieved from: https://telefonicatech.com/en/blog/ai-sandbox-secure-environments-for-evaluating-and-protecting-

artificial-intelligence-models 

https://www.avfirewalls.com/Fortiguard.asp
https://www.google.com/search?q=https://doi.org/10.1145/3638552
https://doi.org/10.1016/j.cose.2024.103842
https://doi.org/10.48550/arXiv.2009.11101
https://doi.org/10.22399/ijcesen.460
https://doi.org/10.48550/arXiv.2405.06124
https://www.google.com/search?q=https://doi.org/10.48550/arXiv.1803.04173
https://doi.org/10.1145/3264888.3264896
https://www.google.com/search?q=https://doi.org/10.1016/j.cose.2022.102533
https://www.opswat.com/docs/filescan/datasheet/url-analysis
https://www.google.com/search?q=https://doi.org/10.48550/arXiv.1704.08716
https://www.google.com/search?q=https://doi.org/10.2139/ssrn.4708146
https://doi.org/10.48550/arXiv.2208.07049
https://doi.org/10.1016/j.icte.2024.03.005


International Journal of Advance Research Publication and Reviews, Vol 2, no 8, pp 303-317, August 2025                                  317
 

 

Umer, M. A., Junejo, K. N., Jilani, M. T., & Mathur, A. P. (2022). Machine learning for intrusion detection in industrial 

control systems: Applications, challenges, and recommendations. International Journal of Critical Infrastructure 

Protection, 38, 100516. https://doi.org/10.1016/j.ijcip.2022.100516 

Varghese, S. A., Ghadim, A. D., Balador, A., Alimadadi, Z., & Papadimitratos, P. (2022). Digital Twin-based Intrusion 

Detection for Industrial Control Systems. arXiv. https://doi.org/10.48550/arXiv.2207.09999 

Vouvoutsis, V., Casino, F., & Patsakis, C. (2024). Beyond the sandbox: Leveraging symbolic execution for evasive 

malware classification. Computers & Security, 149, 104193. https://doi.org/10.1016/j.cose.2024.104193 

WebAsha. (2024). AI-Powered Malware Analysis: How Artificial Intelligence Detects and Prevents Malware Attacks. 

Retrieved from: https://www.webasha.com/blog/ai-powered-malware-analysis-how-artificial-intelligence-detects-and-

prevents-malware-attacks 

Zscaler (2024). Zscaler Cloud Sandbox - AI-Powered Malware Defense. Retrieved from: 

https://www.zscaler.com/products-and-solutions/cloud-sandbox 

 

 

https://www.google.com/search?q=https://doi.org/10.1016/j.ijcip.2022.100516
https://www.google.com/search?q=https://doi.org/10.48550/arXiv.2207.09999
https://www.google.com/search?q=https://doi.org/10.1016/j.cose.2024.104193
https://www.zscaler.com/products-and-solutions/cloud-sandbox

