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ABSTRACT 

Confounding occurs when you have a fractional factorial design and one or more factor effects that cannot be estimated separately. In 

this paper, we construct a 34−1 fractional factorial design by partitioning the 34 factorial design into three blocks, each with 27 treatment 

combinations. One of these one-third fractions was then used for the analysis of a 34−1 fractional factorial design, and also used in testing 

for significance of the factor effects. The four factors considered were: Nitrogen, Phosphorus, Potassium and Manganese. From our 

analysis, the main effects Nitrogen, Potassium, Manganese was significant, the interactions: Nitrogen and Phosphorus, Nitrogen and 

Potassium, were also seen to be significant, while other factors were not significant. 

Keywords: Confounding, Defining Relation, Resolution, Fractional Factorial Design, Blocking, Replication. 

1. INTRODUCTION 

1.1 Background of the study 

Design of experiment is the process of planning an experiment so that appropriate collected data that can be analyzed by 

statistical methods, resulting in a valid and objective conclusion [7]. It is a plan for assigning experimental units to treatment 

levels alongside the statistical analysis associated with the plan [2; 7; 14]. The design and analysis of experiments revolves 

around an understanding of the effects of different variables on other variables. It establishes a cause-and-effect relationship 

between a number of independent variables (or factors) and the dependent variables (response) of interest [4]. 

Design of experiment is divided into four (4) broad categories or types: reliability design of experiment, response surface 

methodology, one-factor design, and factorial design. Among these categories of experimental designs, the factorial design 

was fully explored. [7] defined factorial experiments as experiments in which each complete trial or replication of the 

experiment and all possible combinations of the level of factors are investigated. This is the most efficient design when an 

experiment requires a study of the effects of two or more factors [1; 3; 5]. It is an experiment whose design consist of two 

or more factors, each with discrete possible values or levels, and whose experimental units take in all possible combinations 

of these levels across all such factors [2]. It allows studying the effect of each factor on the response variable, as well as 

the effects of interactions between factors on the response variable [2; 6]. 

Factorial experimentation is a method in which the effect due to each factor and combination of factors are estimated [3; 

8]. The effect of a factor is the change in response produced by a change in the level of the factor; this is referred to as the 

main effect [8]. In some experiments, the difference in the response between levels of one factor is not the same at all levels 

of the other factors; this is called interaction effect [7; 9]. Collectively, main effects and interaction effects are called the 

factorial effects [3]. In a factorial design, since multiple factors are investigated simultaneously, factors that have significant 
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effects on the response are restricted, as well as interactions [10; 11; 14; 15]. Predictions are also performed (where 

quantitative factors are present), but care must be taken as certain designs are very limited in the choice of the prediction 

model [11]. 

Factorial designs have some advantages over the one-factor design, since it allows effects of a factor to be estimated at 

several levels of other factors, yielding conclusions that are valid over a range of experimental conditions [10; 11]. 

Secondly, they are much more efficient for estimating main effects, which are the average effects of a single factor over 

all units [14; 15]. 

Design of experiments (factorial design) was first developed by Ronald A. Fisher at the Rothamsted Agricultural Field 

Research Station in London [12; 13]. His initial experiments were concerned with determining the effects of various 

fertilizers on different plots of land [13]. In another of his experiments, he showed that they are advantages by combining 

the study of multiple variables in the same factorial experiment [12; 13]. Since then, deign of factorial experiments has 

been widely accepted and applied in agriculture, education, biology, statistics, pharmaceutical industry, manufacturing, 

risk management, chemical process design, engineering, and many other areas [14]. 

It is pertinent to note that factorial design collects data at the vertices of a cube in 𝑘-dimensions (𝑘 being the number of 

factors studied), and if the data are collected from all of the vertices, the design is a full (or complete) factorial requiring 

2𝑘 or 3𝑘 runs [2]. This implies that factorial experiments can be performed at two levels, three levels, up to 𝑛 levels. 

Moreover, when the total number of all combinations increases exponentially with the number of factors studied (or if the 

number of combinations in a full factorial design is too high to be logically feasible), a fractional factorial design may be 

performed, where some of the possible combinations (at least half) are omitted [3; 4]. Two level fractional factorial design 

is a special category of two-level designs where not all factor level combinations are considered, and the experimenter can 

choose which combinations are to be excluded. Based on the excluded combinations, certain interactions cannot be 

determined [3; 5; 6]. However, the price we pay for utilizing a half fractional factorial design is that the main effect of the 

last factor is aliased with the interaction because they are identical in the model. Additionally, there is also aliasing among 

other effects, and effects aliasing is a consequence of using a fractional factorial design. A related concept is resolution, 

which captures the amount of aliasing or confounding [5; 6]. 

In general, the higher the resolution of a fractional factorial design, the less restrictive the assumption that higher order 

interactions are negligible to obtain a unique interpretation of a data [13; 14]. Other categories of fractional factorial design 

include: Plackett-Burman design and Taguchi Orthogonal Arrays [4]. Factorial designs, including fractional factorials, 

have increased precision over other types of designs because they have built-in internal replication [2; 5; 6]. Replicates of 

the same points are not needed in a factorial design, which seems like violation of the replication principle; replication is 

also provided by the factors included in the design turns out to have non-significant effects [7]. In this paper, we have 

applied fractional factorial design to studying and improving crop yield using different fertilizer combinations. 

1.2 Statement of the problem 

Over the years, experimenters have studied three-level factorial experiments up to 𝒌-factors but no work has been done for 

the design layout and derivation of model parameters for 𝟑𝟒 factorial design. Moreover, developing a suitable defining 

contrast that will help in constructing the desired number of blocks is another problem often encountered in fractional 

factorial design, and this is what we sought to address in this paper. 

1.3 Aim and objectives of the study 

The aim of this paper was to obtain a suitable defining contrast that will help in confounding a three-level fractional factorial 

experiment, and to as well select an experimental design that allows clear evaluation of main effects and interaction effects 

(especially two-factor interactions). In line with achieving the stated aim, the objectives of the study were to: (i) define a 

suitable defining (simultaneous) contrast that will help in obtaining the required number of blocks, (ii) construct a fractional 

factorial experiment of 34−1, (iii) check for aliases of two, three, and four factor interactions, (iv) identify the type of 
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resolution involve in (ii), (v) test for significance of the factor effects in the constructed experiment, and (vi) draw 

conclusions based on our findings. 

2. MATERIALS AND METHODS  

2.1 The 𝟑𝒌 factorial design 

This is a factorial arrangement with 𝑘 factors each at three levels, where factors and interactions are denoted by capital 

letters, while the three levels are denoted 0, 1 and 2 for low, intermediate and high levels, respectively [2; 3]. Each treatment 

combination in the design will be denoted by 𝑘 digits, with the first digit indicating the level of factor 𝐴, the second digit, 

the level of factor 𝐵, and the 𝑘𝑡ℎ digit, the level of factor 𝑘 [5]. 

There are  3𝑘  treatment combinations or runs with 3𝑘 − 1 degrees of freedom between them. These treatment combinations 

allow sum of squares to be determined for 𝑘 main effects, each with two degrees of freedom, (
𝑘
2
) two-factor interactions, 

each with four degrees of freedom, and so on; and one 𝑘 -factor interaction with 2𝑘 degrees of freedom [3; 5]. For a 34 

factorial design with 81 runs, the treatment combinations allow sum of squares to be determined for 4 main effects, each 

with two degrees of freedom, 6 two-factor interactions, each with four degrees of freedom, 4 three-factor interactions, each 

with eight degrees of freedom, and one four-factor interaction with 24 degrees of freedom [14]. 

In general, an ℎ -factor interaction has 2ℎ degrees of freedom [2; 5]. If there are 𝑛 replicates, there are 𝑛3𝑘 − 1 total degrees 

of freedom and 3𝑘(𝑛 − 1) degrees of freedom for the error. Sum of squares for effects and interactions in the 3𝑘 factorial 

designs are computed by the usual methods for 2𝑘 factorial designs [2]. 

Aside the fact that each three-level factor has two degrees of freedom, there are two systems for parameterizing the 

interaction effects: the orthogonal components system and the linear-quadratic system. Standard analysis of variance is 

applicable to the orthogonal components systems, while a new regression analysis strategy is developed for the linear-

quadratic systems [12, 13]. 

Alternatively, if we denote the 3𝑘 treatment combinations with 𝑘 factors by 𝐴1, 𝐴2, … , 𝐴𝑛 where factor 𝐴𝑖 has 𝑎𝑖0, 𝑎𝑖1, and 

𝑎𝑖2(𝑖 = 1,2, … , 𝑛) or simply 𝑥𝑖 = 0, 1, 2 [5; 6; 9]. Then, a treatment combination can be expressed in the condensed form 

as: 

𝑎1
𝑥1𝑎2

𝑥2 …𝑎𝑘
𝑥𝑘                                                                                                                                                                                  (1) 

where 𝑥𝑖 = 0,1,2 (𝑖 = 1,2, … , 𝑘) and the 𝑥 representation form as: 

(𝑥1, 𝑥2, … , 𝑥𝑘),  𝑥𝑖 = 0, 1, 2                                                                                                                                                        (2) 

The general expression for a partition of the 3𝑘 treatment combinations into three sets of 3𝑘−1 treatment combinations each 

is given by: 

𝛼1𝑥1 + 𝛼2𝑥2 +⋯+ 𝛼𝑘𝑥𝑘 = 0, 1, 2 𝑚𝑜𝑑 3                                                                                                                            (3) 

with 𝛼𝑖 = 0,1 and 𝑥𝑖 = 0,1,2(𝑖 = 1,2, … , 𝑘). We write the effects and interactions with 
(3𝑘−1)

2
  symbols in general form as: 

𝐴1
𝛼1𝐴2

𝛼2 … 𝐴𝑘
𝛼𝑘                                                                                                                                                                                (4) 

Where any letter 𝐴𝑖 with 𝛼𝑖 = 0 is dropped from the expression, and the first nonzero 𝛼 equals one can be achieved by 

multiplying each 𝛼𝑖 by 2. We also note that any 𝛼𝑖 = 1 is not written explicitly in the expression. 

2.2 Parameterization in terms of main effects and interactions 
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If 𝐸𝛼 = 𝐴1
𝛼1𝐴2

𝛼2 … 𝐴𝑘
𝛼𝑘 represents an interaction, then 

𝐸𝑖
𝛼 = (𝐴1

𝛼1𝐴2
𝛼2 … 𝐴𝑘

𝛼𝑘)
𝑖
= (

𝑚𝑒𝑎𝑛 𝑜𝑓 𝑡𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡 𝑐𝑜𝑚𝑏𝑖𝑛𝑎𝑡𝑖𝑜𝑛𝑠 

𝑠𝑎𝑡𝑖𝑠𝑓𝑦𝑖𝑛𝑔 𝛼′𝑥 = 𝑖 𝑚𝑜𝑑 3
) − 𝑀                                                                     (5) 

We shall also use the notation 𝐸𝛼′𝑥
𝛼  for given 𝛼 and 𝑥 to denote of the quantities 𝐸0

𝛼, 𝐸1
𝛼, and 𝐸2

𝛼 depending on whether 

𝛼′𝑥 = 0,1,2 𝑚𝑜𝑑 3, respectively. We note that a comparison belonging to 𝐸𝛼 is given by: 

𝑐0𝐸0
𝛼 + 𝑐1𝐸1

𝛼 + 𝑐2𝐸2
𝛼 (𝑐0 + 𝑐1 + 𝑐2 = 0)                                                                                                                               (6) 

Also, it follows that: 

𝐸0
𝛼 + 𝐸1

𝛼 + 𝐸2
𝛼 = 0                                                                                                                                                                      (7) 

So that any comparison of the form above could be expressed in terms of only two 𝐸𝑖
𝛼 . The response 𝑎(𝑥) of a treatment 

combination 𝑥 as a linear combination of interaction components has the parameterization 

𝑎(𝑥) = 𝑀 +∑𝐸𝛼′𝑥
𝛼

𝛼

                                                                                                                                                                 (8) 

where summation is over all 𝛼′ = (𝛼1, 𝛼2, … , 𝛼𝑘) ≠ (0,0, … ,0), subject to the rule that the first nonzero 𝛼′ equals 1, and 

𝛼′𝑥 is reduced mod 3. 𝑥′ = (𝑥1, 𝑥2, … , 𝑥𝑘) and 𝑎(𝑥) = 𝑎1
𝑥1𝑎2

𝑥2 , … , 𝑎𝑘
𝑥𝑘 , 𝐸𝛼 = 𝐴1

𝑥1𝐴2
𝑥2 , … , 𝐴𝑘

𝑥𝑘 

𝐸𝑖
𝛼 = (𝐴1

𝑥1𝐴2
𝑥2 , … , 𝐴𝑘

𝑥𝑘  )
𝑖
 𝑖 = (0,1,2) 

For a 34 factorial with factors 𝐴, 𝐵, 𝐶, 𝐷 denoting the true response of the treatment combination (𝑖, 𝑗, 𝑘, 𝑙) by 𝑎𝑖𝑏𝑗𝑐𝑘𝑑𝑙, 

then we can write 

𝑎𝑖𝑏𝑗𝑐𝑘𝑑𝑙 = 𝑀 + 𝐴𝑖 + 𝐵𝑗 + 𝐴𝐵𝑖+𝑗 + 𝐴𝐵𝑖+2𝑗
2 + 𝐶𝑘 + 𝐴𝐶𝑖+𝑘 + 𝐴𝐶𝑖+2𝑘

2 + 𝐵𝐶𝑗+𝑘 + 𝐵𝐶𝑗+2𝑘
2 + 𝐴𝐵𝐶𝑖+𝑗+𝑘 + 𝐴𝐵𝐶𝑖+𝑗+2𝑘

2

+ 𝐴𝐵2𝐶𝑖+2𝑗+𝑘 + 𝐴𝐵
2𝐶𝑖+2𝑗+2𝑘

2 + 𝐷𝑖 + 𝐴𝐷𝑖+𝑙 + 𝐴𝐷𝑖+2𝑙
2 + 𝐵𝐷𝑗+𝑙 + 𝐵𝐷𝑗+2𝑙

2 + 𝐶𝐷𝑘+𝑙 + 𝐶𝐷𝑘+2𝑙
2

+ 𝐴𝐵𝐷𝑖+𝑗+𝑙 + 𝐴𝐵𝐷𝑖+𝑗+2𝑙
2 + 𝐴𝐵2𝐷𝑖+2𝑗+𝑙 + 𝐴𝐵

2𝐷𝑖+2𝑗+2𝑙
2 + 𝐴𝐶𝐷𝑖+𝑗+𝑙 + 𝐴𝐶𝐷𝑖+𝑘+2𝑙

2 + 𝐴𝐶2𝐷𝑖+2𝑘+𝑙
+ 𝐴𝐶2𝐷𝑖+2𝑘+2𝑙

2 + 𝐵𝐶𝐷𝑗+𝑘+𝑙 + 𝐵𝐶𝐷𝑗+𝑘+2𝑙
2 + 𝐵𝐶2𝐷𝑗+2𝑘+𝑙 + 𝐵𝐶

2𝐷𝑗+2𝑘+2𝑙
2 + 𝐴𝐵𝐶𝐷𝑖+𝑗+𝑘+𝑙

+ 𝐴𝐵𝐶𝐷𝑖+𝑗+𝑘+2𝑙
2 + 𝐴𝐵𝐶2𝐷𝑖+𝑗+2𝑘+𝑙 + 𝐴𝐵

2𝐶𝐷𝑖+2𝑗+𝑘+𝑙 + 𝐴𝐵
2𝐶2𝐷𝑖+2𝑗+2𝑘+𝑙 + 𝐴𝐵

2𝐶𝐷𝑖+2𝑗+𝑘+2𝑙
2

+ 𝐴𝐵𝐶2𝐷𝑖+𝑗+2𝑘+2𝑙
2 + 𝐴𝐵2𝐶2𝐷𝑖+2𝑗+2𝑘+2𝑙

2  

Hence, the 34 factorial design has 81 treatment combinations each with 
(34−1)

2
=

80

2
= 40 symbols. The definition of 

parameterization in terms of the partitions holds for quantitative and qualitative factors, and same has been used in this 

study. 

2.3 Design layout for a 𝟑𝟒 factorial design 

From the layout in Table 1, we have used digit notation for the treatment combinations, where 0, 1, 2 represent low level, 

intermediate level and high level respectively. For instance, 0112 represents treatment combination with factor ‘A’ at low 

level, factors ‘B’ and ‘C’ at intermediate level, and factor ‘D’ at high level. 

2.4 Confounding in the 𝟑𝒌 factorial design 

In the 3𝑘 factorial design each main effect has two degrees of freedom, and every two-factor interaction has four degrees 

of freedom, and can be decomposed into two components of interaction, each with two degrees of freedom. Every three-

factor interaction has eight degrees of freedom and can be decomposed into four components of interaction, each with two 

degrees of freedom.  
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Hence, it becomes necessary or convenient to confound a component of interaction with blocks, and the general procedure 

is to construct a defining contrast 

𝐿 = 𝛼1𝑥1 + 𝛼2𝑥2 +⋯+ 𝛼𝑘𝑥𝑘                                                                                                                                                   (9) 

𝛼𝑖 = the exponent appearing on the 𝑖𝑡ℎ factor in the effect to be confounded. 

𝑥𝑖 = the level of the 𝑖𝑡ℎ factor appearing in a particular treatment combination 

For this design, we have 𝛼𝑖 = 0, 1, 2 with the first nonzero 𝛼𝑖 as unity, and 𝑥𝑖 = 0, 1, 2 indicating low, intermediate or high 

levels respectively. The treatment combinations are assigned to three blocks depending on whether it satisfies 𝐿 =

0(𝑚𝑜𝑑 3), 𝐿 = 1(𝑚𝑜𝑑 3) or 𝐿 = 2(𝑚𝑜𝑑)3. The treatment combination satisfying 𝐿 = 0(𝑚𝑜𝑑 3) constitute the principal 

block. 

Other methods for identification of confounded effects in factorial experiments include: table of sign method, geometric 

method, odd or even method, and multiplication method. 

TABLE 1 

   A 

D C B 0 1 2 

  0 0000 1000 2000 

 0 1 0010 1010 2010 

  2 0020 1020 2020 

  0 0100 1100 2100 

0 1 1 0110 1110 2110 

  2 0120 1120 2120 

  0 0200 1200 2200 

 2 1 0210 1210 2210 

  2 0200 1220 2220 

  0 0001 1001 2001 

 0 1 0011 1011 2011 

  2 0021 1021 2021 

  0 0101 1101 2101 

1 1 1 0111 1111 2111 

  2 0121 1121 2121 
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   A 

D C B 0 1 2 

  0 0201 1201 2201 

 2 1 0211 1211 2211 

  2 0221 1221 2221 

  0 0002 1002 2002 

 0 1 0012 1012 2012 

  2 0022 1022 2022 

  0 0102 1102 2102 

2 1 1 0112 1112 2112 

  2 0122 1122 2122 

  0 0202 1202 2202 

 2 1 0212 1212 2212 

  2 0222 1222 2222 

2.5 Fractional replication of the 𝟑𝒌 factorial design 

When the number of factors or number of levels of the factors increases, the number of treatment combinations increases 

rapidly. Hence, it is not possible to accommodate all these treatment combinations in a single homogeneous block. For this 

to be possible, we fractionalize the design and confound a component of interaction with blocks. 

To construct a 3𝑘−1 fractional factorial design, we select a two-degree of freedom component of interaction (generally the 

highest order interaction), and partition the full 3𝑘 design into three blocks. Each of these three blocks is a 3𝑘−1 fractional 

factorial design, and any one of the blocks may be selected for use. 

If 𝐴𝐵𝛼2𝐶𝛼2 …𝐾𝛼𝑘 is the component of interaction used to define the blocks, then 𝐼 = 𝐴𝐵𝛼2𝐶𝛼2 …𝐾𝛼𝑘 is the defining 

relation of the fractional factorial design. We may introduce the 𝑘𝑡ℎ factor by equating its levels 𝑥𝑘 to the appropriate 

component of the highest order interaction say 𝐴𝐵𝛼2𝐶𝛼2 …(𝑘 − 1)𝛼𝑘−1 through the relation 

𝑥𝑘 = 𝐵1𝑥1 + 𝐵2𝑥2 +⋯+ 𝐵𝑘−1𝑥𝑘−1                                                                                                                                     (10) 

where: 𝛽𝑖 = (3 − 𝛼𝑘)𝛼𝑖(𝑚𝑜𝑑 3) 𝑓𝑜𝑟 1 ≤ 𝑖 ≤ 𝑘 − 1 

This yields a design of the highest possible resolution. Each main effects or component of interaction estimated from the 

3𝑘−1 design has two aliases, which may be found by multiplying the effects by both 𝐼 and 𝐼2𝑚𝑜𝑑 3. 

Every four-factor interaction has sixteen degrees of freedom, and can be decomposed into eight components 𝐴𝐵𝐶𝐷, 

𝐴𝐵2𝐶𝐷, 𝐴𝐵𝐶2𝐷, 𝐴𝐵𝐶𝐷2, 𝐴𝐵2𝐶𝐷2, 𝐴𝐵2𝐶2𝐷, 𝐴𝐵𝐶2𝐷2 and 𝐴𝐵2𝐶2𝐷2, each with two degrees of freedom. However, any 
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of these components can be used as defining contrast since they are negligible. In this article, the component of interaction 

used to define the blocks is 𝐼 = 𝐴𝐵𝐶𝐷2. 

2.6 Aliasing pattern and resolution of the experiment 

Knowing the defining contrast allows one to ascertain the resolution of the design and the general confounding (aliasing) 

pattern. As stated earlier, the defining contrast for any design is determined from the highest order interaction, hence any 

of these eight four-factor interactions: 𝐴𝐵𝐶𝐷, 𝐴𝐵2𝐶𝐷, 𝐴𝐵𝐶2𝐷, 𝐴𝐵𝐶𝐷2, 𝐴𝐵2𝐶𝐷2, 𝐴𝐵2𝐶2𝐷, 𝐴𝐵𝐶2𝐷2 and 𝐴𝐵2𝐶2𝐷2 may 

be used as defining contrast. For our design (Wu and Hamada, 2000), we have used 𝐼 = 𝐴𝐵𝐶𝐷2 as our defining contrast. 

Multiplying both sides of the defining contrast by each of the factors 𝐴, 𝐵, 𝐶 and 𝐷, respectively, we have: 

𝐼 = 𝐴𝐵𝐶𝐷2 

𝐴 = 𝐴 ×  𝐴𝐵𝐶𝐷2 = (𝐴2𝐵𝐶𝐷2)2 = 𝐴4𝐵2𝐶2𝐷4 = 𝐴𝐵2𝐶2𝐷 

𝐴 = 𝐴 × ( 𝐴𝐵𝐶𝐷2)2 = 𝐴3𝐵2𝐶2𝐷4 = (𝐵2𝐶2𝐷)2 = 𝐵𝐶𝐷2 

𝐵 = 𝐵 × 𝐴𝐵𝐶𝐷2 = 𝐴𝐵2𝐶𝐷2 

𝐵 = 𝐵 × ( 𝐴𝐵𝐶𝐷2)2 = (𝐴2𝐵3𝐶2𝐷4 )2 = 𝐴𝐶𝐷2 

𝐶 = 𝐶 × 𝐴𝐵𝐶𝐷2 = 𝐴𝐵𝐶2𝐷2 

𝐶 = 𝐶 × ( 𝐴𝐵𝐶𝐷2)2 = (𝐴2𝐵2𝐶3𝐷4)2 = 𝐴𝐵𝐷2 

𝐷 = 𝐷 × 𝐴𝐵𝐶𝐷2 = 𝐴𝐵𝐶𝐷3 = 𝐴𝐵𝐶 

𝐷 = 𝐷 × ( 𝐴𝐵𝐶𝐷2)2 = (𝐴
2
𝐵2𝐶2𝐷2)2 = 𝐴𝐵𝐶𝐷 

𝐴𝐵 = 𝐴𝐵 × 𝐴𝐵𝐶𝐷2 = (𝐴
2
𝐵2𝐶𝐷2)2 = 𝐴𝐵𝐶2𝐷 

𝐴𝐵 = 𝐴𝐵 × ( 𝐴𝐵𝐶𝐷2)2 = 𝐴3𝐵3𝐶2𝐷4 = (𝐶2𝐷)2 = 𝐶𝐷2 

𝐴𝐵2 = 𝐴𝐵2 × 𝐴𝐵𝐶𝐷2 = (𝐴2𝐵3𝐶𝐷2)2 = 𝐴4𝐶2𝐷4 = 𝐴𝐶2𝐷 

𝐴𝐵2 = 𝐴𝐵2 × ( 𝐴𝐵𝐶𝐷2)2 = 𝐴3𝐵4𝐶2𝐷4 = 𝐵𝐶2𝐷 

𝐴𝐶 =  𝐴𝐶 × 𝐴𝐵𝐶𝐷2 = (𝐴2𝐵𝐶2𝐷2)2 = 𝐴4𝐵2𝐶4𝐷4 = 𝐴𝐵2𝐶𝐷 

𝐴𝐶 = 𝐴𝐶 × ( 𝐴𝐵𝐶𝐷2)2 = 𝐴3𝐵2𝐶3𝐷4 = (𝐵2𝐷)2 = 𝐵𝐷2 

𝐴𝐶2 = 𝐴𝐶2 × 𝐴𝐵𝐶𝐷2 = (𝐴2𝐵𝐶3𝐷2)2 = 𝐴𝐵2𝐷 

𝐴𝐶2 = 𝐴𝐶2 × ( 𝐴𝐵𝐶𝐷2)2 = (𝐴3𝐵2𝐶4𝐷4)2 = 𝐵𝐶2𝐷2 

𝐴𝐷 = 𝐴𝐷 ×  𝐴𝐵𝐶𝐷2 = (𝐴2𝐵𝐶𝐷3)2 = 𝐴4𝐵2𝐶2 = 𝐴𝐵2𝐶2 

𝐴𝐷 = 𝐴𝐷 × ( 𝐴𝐵𝐶𝐷2)2 = (𝐴3𝐵2𝐶2𝐷5)2 = (𝐵2𝐶2𝐷2)
2
= 𝐵𝐶𝐷 

𝐴𝐷2 = 𝐴𝐷2 ×  𝐴𝐵𝐶𝐷2 = (𝐴2𝐵𝐶𝐷4)2 = 𝐴𝐵2𝐶2𝐷2 

𝐴𝐷2 = 𝐴𝐷2 × ( 𝐴𝐵𝐶𝐷2)2 = (𝐴3𝐵2𝐶2𝐷6)2 = 𝐵𝐶 
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𝐵𝐶 = 𝐵𝐶 ×  𝐴𝐵𝐶𝐷2 = 𝐴𝐵2𝐶2𝐷2 

𝐵𝐶 = 𝐵𝐶 × ( 𝐴𝐵𝐶𝐷2)2 = (𝐴2𝐵3𝐶3𝐷4)2 = 𝐴𝐷2 

𝐵𝐶2 = 𝐵𝐶2 ×  𝐴𝐵𝐶𝐷2 = 𝐴𝐵2𝐶3𝐷2 = 𝐴𝐵2𝐷2 

𝐵𝐶2 = 𝐵𝐶2 × ( 𝐴𝐵𝐶𝐷2)2 = (𝐴2𝐵3𝐶4𝐷4)2 = (𝐴2𝐶𝐷)2 = 𝐴𝐶2𝐷2 

𝐵𝐷 = 𝐵𝐷 ×  𝐴𝐵𝐶𝐷2 = 𝐴𝐵2𝐶𝐷3 = 𝐴𝐵2𝐶 

𝐵𝐷 = 𝐵𝐷 × ( 𝐴𝐵𝐶𝐷2)2 = 𝐴2𝐵3𝐶2𝐷5 = (𝐴2𝐶2𝐷2)2 = 𝐴𝐶𝐷 

𝐶𝐷 = 𝐶𝐷 ×  𝐴𝐵𝐶𝐷2 = 𝐴𝐵𝐶2𝐷3 = 𝐴𝐵𝐶2 

𝐶𝐷 = 𝐶𝐷 × ( 𝐴𝐵𝐶𝐷2)2 = 𝐴2𝐵2𝐶3𝐷5 = (𝐴2𝐵2𝐷2)2 = 𝐴𝐵𝐷 

From the above, the following effects are aliased: 

𝐴 = 𝐵𝐶𝐷2 = 𝐴𝐵2𝐶2𝐷 

𝐵 = 𝐴𝐶𝐷2 = 𝐴𝐵2𝐶𝐷2 

𝐶 = 𝐴𝐵𝐷2 = 𝐴𝐵𝐶2𝐷2 

𝐷 = 𝐴𝐵𝐶 = 𝐴𝐵𝐶𝐷 

𝐴𝐵 = 𝐶𝐷2 = 𝐴𝐵𝐶2𝐷 

𝐴𝐵2 = 𝐴𝐶2𝐷 = 𝐵𝐶2𝐷 

𝐴𝐶 = 𝐵𝐷2 = 𝐴𝐵2𝐶𝐷 

𝐴𝐶2 = 𝐴𝐵2𝐷 = 𝐵𝐶2𝐷2 

𝐴𝐷 = 𝐴𝐵2𝐶2 = 𝐵𝐶𝐷 

𝐴𝐷2 = 𝐵𝐶 = 𝐴𝐵2𝐶2𝐷2 

𝐵𝐶2 = 𝐴𝐵2𝐷2 = 𝐴𝐶2𝐷2 

𝐵𝐷 = 𝐴𝐵2𝐶 = 𝐴𝐶𝐷 

𝐶𝐷 = 𝐴𝐵𝐶2 = 𝐴𝐵𝐷 

It is pertinent to note that main effects are aliased with three-factor interactions, while two-factor interactions are aliased 

with each other. This is a clear definition of resolution 𝐼𝑉 design written 3𝐼𝑉
4−1. 

However, as a consequence of the reduction in the number of treatments included in the experiment, we shall not be able 

to estimate the effects involving four factor interactions using the fractional set. All the main effects and two-factor 

interactions can be estimated under assumption that all three-factor and higher-order interactions are negligible. If that be 

the case then 𝐴, 𝐵, 𝐶, 𝐷, 𝐴𝐵2, 𝐴𝐶2, 𝐴𝐷, 𝐵𝐶2, 𝐵𝐷 and 𝐶𝐷 can be estimated because they are not aliased with any other 

main effect or two-factor interaction component (they are clear). 
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2.7 Algorithm for constructing fractional factorial design 

Step 1: Specify the values of 𝑝 and 𝑘. 

Step 2: Write a complete factorial design for 𝑝 − 𝑘 factors (containing 0, 1, 2). 

Step 3: Add 𝑘 further columns to be filled in the next steps. 

Step 4: Take the defining relation 𝑋 containing only one letter (say 𝑊) other than in the already filled columns. If no such 

relation can be found, multiply existing relations so that the result contains only one new letter. 

Step 5: Multiply this relation 𝐼 = 𝑋 by the new letter 𝑊 and use 𝑋𝑊 in the next step. 

Step 6: Calculate the entries of the next column by multiplying the entries of the original columns belonging to 𝑋𝑊. Add 

the generated column to the set of filled-in columns. 

Step 7: Continue with step (4) as long as all new columns are filled. 

2.8 Model for the 𝟑𝟒 factorial design 

The model for a four-factor factorial experiment at three levels is given as: 

𝑦𝑖𝑗𝑘𝑙𝑚 = 𝜇 + 𝛼𝑖 + 𝛽𝑗 + 𝜏𝑘 + 𝜃𝑙 + (𝛼𝛽)𝑖𝑗 + (𝛼𝜏)𝑖𝑘 + (𝛼𝜃)𝑖𝑙 + (𝛽𝜏)𝑗𝑘 + (𝛽𝜃)𝑗𝑙 + (𝜏𝜃)𝑘𝑙  

                                    + (𝛼𝛽𝜏)𝑖𝑗𝑘 + (𝛼𝛽𝜃)𝑖𝑗𝑙 + (𝛼𝜏𝜃)𝑖𝑘𝑙 + (𝛽𝜏𝜃)𝑗𝑘𝑙 + (𝛼𝛽𝜏𝜃)𝑖𝑗𝑘𝑙 + 𝜀𝑖𝑗𝑘𝑙𝑚  

{
 
 

 
 

𝑖 = 1, . . , 𝑎.    𝑓𝑎𝑐𝑡𝑜𝑟 𝐴

𝑗 = 1, . . , 𝑏.    𝑓𝑎𝑐𝑡𝑜𝑟 𝐵
𝑘 = 1, . . , 𝑐.   𝑓𝑎𝑐𝑡𝑜𝑟 𝐶
𝑙 = 1,… , 𝑑.  𝑓𝑎𝑐𝑡𝑜𝑟 𝐷

  𝑚 = 1,… , 𝑛.  𝑟𝑒𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛

                                                                                                                                         (11) 

where: 

𝜇 = overall (or grand mean) 

𝛼𝑖 = effect due to the 𝑖𝑡ℎ level of factor A 

𝛽𝑖 = effect due to the 𝑗𝑡ℎ level of factor B 

𝜏𝑘 = effect due to the 𝑘𝑡ℎ level of factor C 

𝜃𝑙 = effect due to the 𝑙𝑡ℎ level of factor D 

(𝛼𝛽)𝑖𝑗, (𝛼𝜏)𝑖𝑘 , (𝛼𝜃)𝑖𝑙, (𝛽𝜏)𝑗𝑘, (𝛽𝜃)𝑗𝑙, and (𝜏𝜃)𝑘𝑙 are two-factor effects for factors 𝐴𝐵, 𝐴𝐶, 𝐴𝐷, 𝐵𝐶, 𝐵𝐷, and 𝐶𝐷 

respectively. 

(𝛼𝛽𝜏)𝑖𝑗𝑘, (𝛼𝛽𝜃)𝑖𝑗𝑙, (𝛼𝜏𝜃)𝑖𝑘𝑙 , and (𝛽𝜏𝜃)𝑗𝑘𝑙  are the three factor interaction effects for factors 𝐴𝐵𝐶, 𝐴𝐵𝐷, 𝐴𝐶𝐷, and 𝐵𝐶𝐷, 

respectively. 

(𝛼𝛽𝜏𝜃)𝑖𝑗𝑘𝑙  = the four-factor interaction effects for factor 𝐴𝐵𝐶𝐷. 

𝜀𝑖𝑗𝑘𝑙𝑚 = the random error 
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Constraints:  

∑ 𝛼𝑖
𝑎
𝑖=1 = 0, ∑ 𝛽𝑗

𝑏
𝑗=1 = 0, ∑ 𝜏𝑘

𝑐
𝑘=1 = 0, ∑ 𝜃𝑙

𝑑
𝑙=1 = 0, ∑ (𝛼𝛽)𝑖𝑗

𝑎
𝑖=1 = 0, ∑ (𝛼𝛽)𝑖𝑗

𝑏
𝑗=1 = 0, ∑ (𝛼𝜏)𝑖𝑘

𝑎
𝑖=1 = 0, ∑ (𝛼𝜏)𝑖𝑘

𝑐
𝑘=1 =

0, ∑ (𝛽𝜏)𝑗𝑘
𝑏
𝑗=1 = 0, ∑ (𝛽𝜏)𝑗𝑘

𝑐
𝑘=1 = 0, ∑ (𝛼𝛽𝜏)𝑖𝑗𝑘

𝑎
𝑖=1 = 0, ∑ (𝛼𝛽𝜏)𝑖𝑗𝑘

𝑏
𝑗=1 = 0, ∑ (𝛼𝛽𝜏)𝑖𝑗𝑘

𝑐
𝑘=1 = 0, 

∑ ∑ ∑ ∑ (𝛼𝛽𝜏𝜃)𝑖𝑗𝑘𝑙
𝑑
𝑙=1

𝑐
𝑘=1

𝑏
𝑗=1

𝑎
𝑖=1 = 0 

2.9 Cultural management of Pawpaw (Carica Papaya) 

Pawpaw is a tropical fruit that belongs to the cactus group of plants. Although it needs adequate water supply throughout 

its life span, it desires loamy soils rich in plant nutrient with good air flow and plenty sunlight. The plant contains a white 

latex from which papain is extracted. Papain extracted from green mature fruits is used for certain drug production, silk 

degumming, softening wool, and for beer production. 

Papaya is planted or propagated with seeds. Seeds are gotten from selected fruits produced by controlled pollination to 

ensure the quality and uniformity of the plantings. Three to four seedlings are raised per a plastic bag or container and are 

planted in an open field when they are 20 cm high. 

For open field planting, the land is ploughed and harrowed twice to insure proper irrigation and drainage. Organic fertilizer 

and manure should be spread and incorporated in the soil during land preparation, while planting distance is 2.5𝑚 × 1.6𝑚 

to 3𝑚 × 2𝑚. 

To minimize flower drop, fruit drop and growth retardation, irrigate the plants before the soil gets dry. Too much watering 

of plants should be avoided to prevent fungal infection and ensure soil is aerated from time to time through shallow 

cultivation to avoid root rot. 

Fertilization, propping, and weed control are necessary for flower fertilization, fruit development, and crop sanitization. 

2.10 Method of data collection 

The data type and source of this research were secondary; the data was obtained from the Cross River University of 

Technology Research Farm, Obubra. Other sources of this research included: textbooks, articles, journals, and materials 

from the internet. 

3. RESULTS 

3.1 Data analysis 

We were interested in carrying out experiment to study the effect of four factors (fertilizers) on the yield of Carica Papaya 

(pawpaw). Before establishing the pawpaw plantation, a representative soil sample was taken and the soil analysis results 

indicates that the quantities of fertilization needed before planting are Nitrogen(A), Phosphorus(B), Potassium(C) and 

Manganese(D). Each of these factors was applied into the soil and studied at three levels as shown in Table 2. The 

experimental plan is a three-level fractional factorial design in 27 runs, each run replicated three times as shown in Table 

4, where the three-levels of each factor are represented by 0, 1, 2. The response chosen to be monitored is the number of 

fruits borne by individual plants. 

TABLE 2 

Factor 0 1 2 

A (Nitrogen) 10 15 20 

B (Phosphorus) 10 20 20 
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Factor 0 1 2 

C (Potassium) 5 15 25 

D (Manganese) 20 25 30 

TABLE 3A 

Treatment Combination Number of Fruits Per Stand Totals 

Run Order A B C D Rep. 1 Rep. 2 Rep. 3 Yield 

1 0 0 0 1 26 33 29 88 

2 0 0 0 2 14 22 27 63 

3 0 0 0 3 17 24 23 64 

4 0 0 1 1 25 23 22 70 

5 0 0 1 2 27 30 26 83 

6 0 0 1 3 18 20 17 55 

7 0 0 2 1 20 24 20 64 

8 0 0 2 2 21 29 16 66 

9 0 0 2 3 15 19 21 55 

10 0 1 0 1 25 22 24 71 

11 0 1 0 2 28 32 31 91 

12 0 1 0 3 19 20 25 64 

13 0 1 1 1 20 31 22 73 

14 0 1 1 2 23 21 24 68 

15 0 1 1 3 24 22 27 73 

16 0 1 2 1 28 20 22 70 

17 0 1 2 2 22 27 20 69 

18 0 1 2 3 23 20 22 65 

19 0 2 0 1 19 23 24 66 

20 0 2 0 2 20 20 19 59 
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Treatment Combination Number of Fruits Per Stand Totals 

Run Order A B C D Rep. 1 Rep. 2 Rep. 3 Yield 

21 0 2 0 3 29 31 31 91 

22 0 2 1 1 29 31 29 89 

23 0 2 1 2 22 20 25 67 

24 0 2 1 3 23 27 22 72 

25 0 2 2 1 21 25 24 70 

26 0 2 2 2 28 24 27 79 

27 0 2 2 3 24 25 25 74 

28 1 0 0 1 20 26 22 68 

29 1 0 0 2 34 34 34 102 

30 1 0 0 3 22 31 32 85 

31 1 0 1 1 22 32 34 88 

32 1 0 1 2 17 26 28 71 

33 1 0 1 3 33 32 23 88 

34 1 0 2 1 31 29 29 89 

35 1 0 2 2 16 27 25 68 

36 1 0 2 3 19 20 15 54 

37 1 1 0 1 30 26 22 78 

38 1 1 0 2 25 22 23 70 

39 1 1 0 3 34 34 34 102 

40 1 1 1 1 34 33 33 100 

41 1 1 1 2 19 28 19 66 

42 1 1 1 3 23 34 21 78 

43 1 1 2 1 20 25 22 67 

44 1 1 2 2 31 27 32 90 
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Treatment Combination Number of Fruits Per Stand Totals 

Run Order A B C D Rep. 1 Rep. 2 Rep. 3 Yield 

45 1 1 2 3 24 25 18 67 

46 1 2 0 1 32 35 33 102 

47 1 2 0 2 25 27 30 82 

48 1 2 0 3 19 21 32 72 

49 1 2 1 1 18 22 23 63 

50 1 2 1 2 34 35 25 94 

51 1 2 1 3 33 20 25 78 

52 1 2 2 1 20 23 30 73 

53 1 2 2 2 25 25 24 74 

54 1 2 2 3 25 28 28 81 

55 2 0 0 1 23 24 18 65 

56 2 0 0 2 18 22 33 73 

57 2 0 0 3 36 34 31 101 

58 2 0 1 1 35 35 35 105 

59 2 0 1 2 29 21 29 79 

60 2 0 1 3 23 20 19 62 

61 2 0 2 1 21 31 23 75 

62 2 0 2 2 34 36 33 103 

63 2 0 2 3 25 33 22 80 

64 2 1 0 1 36 35 35 106 

65 2 1 0 2 21 21 16 58 

66 2 1 0 3 20 30 22 72 

67 2 1 1 1 19 27 20 66 

68 2 1 1 2 35 24 36 95 
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Treatment Combination Number of Fruits Per Stand Totals 

Run Order A B C D Rep. 1 Rep. 2 Rep. 3 Yield 

69 2 1 1 3 21 27 17 65 

70 2 1 2 1 23 32 25 80 

71 2 1 2 2 24 25 26 75 

72 2 1 2 3 31 31 32 94 

73 2 2 0 1 20 35 22 77 

74 2 2 0 2 36 34 34 104 

75 2 2 0 3 23 21 28 72 

76 2 2 1 1 21 25 23 69 

77 2 2 1 2 25 20 24 69 

78 2 2 1 3 35 36 34 105 

79 2 2 2 1 35 35 35 105 

80 2 2 2 2 22 21 26 69 

81 2 2 2 3 21 18 25 64 

Because of run size economy, cost and difficulty in estimating all the parameters of the model, we had to use a three-level 

fractional factorial design in 27 runs (one-third fraction). For this to be possible, we needed a defining contrast. This 

defining contrast was determined from the highest order interactions, and the highest order interaction used was 𝐼 =

𝐴𝐵𝐶𝐷2.  This is illustrated as shown below. 

TABLE 3B 

Factor Totals  

Run Order A B C D Yield 𝐼 = 𝐴𝐵𝐶𝐷2 = 𝑥1 + 𝑥2 + 𝑥3 + 2𝑥4 

1 0 0 0 1 88 1(0)+1(0)+1(0)+2(0)=0 

2 0 0 0 2 63 1(0)+1(0)+1(0)+2(1)=2 

3 0 0 0 3 64 1(0)+1(0)+1(0)+2(2)=1 

4 0 0 1 1 70 1(0)+1(0)+1(1)+2(0)=1 

5 0 0 1 2 83 1(0)+1(0)+1(1)+2(1)=0 

6 0 0 1 3 55 1(0)+1(0)+1(1)+2(2)=2 
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Factor Totals  

Run Order A B C D Yield 𝐼 = 𝐴𝐵𝐶𝐷2 = 𝑥1 + 𝑥2 + 𝑥3 + 2𝑥4 

7 0 0 2 1 64 1(0)+1(0)+1(2)+2(0)=2 

8 0 0 2 2 66 1(0)+1(0)+1(2)+2(1)=1 

9 0 0 2 3 55 1(0)+1(0)+1(2)+2(2)=0 

10 0 1 0 1 71 1(0)+1(1)+1(0)+2(0)=1 

11 0 1 0 2 91 1(0)+1(1)+1(0)+2(1)=0 

12 0 1 0 3 64 1(0)+1(1)+1(0)+2(2)=2 

13 0 1 1 1 73 1(0)+1(1)+1(1)+2(0)=2 

14 0 1 1 2 68 1(0)+1(1)+1(1)+2(1)=1 

15 0 1 1 3 73 1(0)+1(1)+1(1)+2(2)=0 

16 0 1 2 1 70 1(0)+1(1)+1(2)+2(0)=0 

17 0 1 2 2 69 1(0)+1(1)+1(2)+2(1)=2 

18 0 1 2 3 65 1(0)+1(1)+1(2)+2(2)=1 

19 0 2 0 1 66 1(0)+1(2)+1(0)+2(0)=2 

20 0 2 0 2 59 1(0)+1(2)+1(0)+2(1)=1 

21 0 2 0 3 91 1(0)+1(2)+1(0)+2(2)=0 

22 0 2 1 1 89 1(0)+1(2)+1(1)+2(0)=0 

23 0 2 1 2 67 1(0)+1(2)+1(1)+2(1)=2 

24 0 2 1 3 72 1(0)+1(2)+1(1)+2(2)=1 

25 0 2 2 1 70 1(0)+1(2)+1(2)+2(0)=1 

26 0 2 2 2 79 1(0)+1(2)+1(2)+2(1)=0 

27 0 2 2 3 74 1(0)+1(2)+1(2)+2(2)=2 

28 1 0 0 1 68 1(1)+1(0)+1(0)+2(0)=1 

29 1 0 0 2 102 1(1)+1(0)+1(0)+2(1)=0 

30 1 0 0 3 85 1(1)+1(0)+1(0)+2(2)=2 
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Factor Totals  

Run Order A B C D Yield 𝐼 = 𝐴𝐵𝐶𝐷2 = 𝑥1 + 𝑥2 + 𝑥3 + 2𝑥4 

31 1 0 1 1 88 1(1)+1(0)+1(1)+2(0)=2 

32 1 0 1 2 71 1(1)+1(0)+1(1)+2(1)=1 

33 1 0 1 3 88 1(1)+1(0)+1(1)+2(2)=1 

34 1 0 2 1 89 1(1)+1(0)+1(2)+2(0)=0 

35 1 0 2 2 68 1(1)+1(0)+1(2)+2(1)=2 

36 1 0 2 3 54 1(1)+1(0)+1(2)+2(2)=1 

37 1 1 0 1 78 1(1)+1(1)+1(0)+2(0)=2 

38 1 1 0 2 70 1(1)+1(1)+1(0)+2(1)=1 

39 1 1 0 3 102 1(1)+1(1)+1(0)+2(2)=0 

40 1 1 1 1 100 1(1)+1(1)+1(1)+2(0)=0 

41 1 1 1 2 66 1(1)+1(1)+1(1)+2(1)=2 

42 1 1 1 3 78 1(1)+1(1)+1(1)+2(2)=1 

43 1 1 2 1 67 1(1)+1(1)+1(2)+2(0)=1 

44 1 1 2 2 90 1(1)+1(1)+1(2)+2(1)=0 

45 1 1 2 3 67 1(1)+1(1)+1(2)+2(2)=2 

46 1 2 0 1 102 1(1)+1(2)+1(0)+2(0)=0 

47 1 2 0 2 82 1(1)+1(2)+1(0)+2(1)=2 

48 1 2 0 3 72 1(1)+1(2)+1(0)+2(2)=1 

49 1 2 1 1 63 1(1)+1(2)+1(1)+2(0)=1 

50 1 2 1 2 94 1(1)+1(2)+1(1)+2(1)=0 

51 1 2 1 3 78 1(1)+1(2)+1(1)+2(2)=2 

52 1 2 2 1 73 1(1)+1(2)+1(2)+2(0)=2 

53 1 2 2 2 74 1(1)+1(2)+1(2)+2(1)=1 

54 1 2 2 3 81 1(1)+1(2)+1(2)+2(2)=0 
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Factor Totals  

Run Order A B C D Yield 𝐼 = 𝐴𝐵𝐶𝐷2 = 𝑥1 + 𝑥2 + 𝑥3 + 2𝑥4 

55 2 0 0 1 65 1(2)+1(0)+1(0)+2(0)=2 

56 2 0 0 2 73 1(2)+1(0)+1(0)+2(1)=1 

57 2 0 0 3 101 1(2)+1(0)+1(0)+2(2)=0 

58 2 0 1 1 105 1(2)+1(0)+1(1)+2(0)=0 

59 2 0 1 2 79 1(2)+1(0)+1(1)+2(1)=2 

60 2 0 1 3 62 1(2)+1(0)+1(1)+2(2)=1 

61 2 0 2 1 75 1(2)+1(0)+1(2)+2(0)=1 

62 2 0 2 2 103 1(2)+1(0)+1(2)+2(1)=0 

63 2 0 2 3 80 1(2)+1(0)+1(2)+2(2)=2 

64 2 1 0 1 106 1(2)+1(1)+1(0)+2(0)=0 

65 2 1 0 2 58 1(2)+1(1)+1(0)+2(1)=2 

66 2 1 0 3 72 1(2)+1(1)+1(0)+2(2)=1 

67 2 1 1 1 66 1(2)+1(1)+1(1)+2(0)=1 

68 2 1 1 2 95 1(2)+1(1)+1(1)+2(1)=0 

69 2 1 1 3 65 1(2)+1(1)+1(1)+2(2)=2 

70 2 1 2 1 80 1(2)+1(1)+1(2)+2(0)=2 

71 2 1 2 2 75 1(2)+1(1)+1(2)+2(1)=1 

72 2 1 2 3 94 1(2)+1(1)+1(2)+2(2)=0 

73 2 2 0 1 77 1(2)+1(2)+1(0)+2(0)=1 

74 2 2 0 2 104 1(2)+1(2)+1(0)+2(1)=0 

75 2 2 0 3 72 1(2)+1(2)+1(0)+2(2)=2 

76 2 2 1 1 69 1(2)+1(2)+1(1)+2(0)=2 

77 2 2 1 2 69 1(2)+1(2)+1(1)+2(1)=1 

78 2 2 1 3 105 1(2)+1(2)+1(1)+2(2)=0 
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Factor Totals  

Run Order A B C D Yield 𝐼 = 𝐴𝐵𝐶𝐷2 = 𝑥1 + 𝑥2 + 𝑥3 + 2𝑥4 

79 2 2 2 1 105 1(2)+1(2)+1(2)+2(0)=0 

80 2 2 2 2 69 1(2)+1(2)+1(2)+2(1)=2 

81 2 2 2 3 64 1(2)+1(2)+1(2)+2(2)=1 

From the above, values corresponding to 𝐼 = 0 𝑚𝑜𝑑 3 , 𝐼 = 1 𝑚𝑜𝑑 3, 𝑎𝑛𝑑 𝐼 = 2 𝑚𝑜𝑑 3 were put in blocks I, II and III 

respectively. Hence, the principal block, 𝐼 = 0 𝑚𝑜𝑑 3 is 

TABLE 4 

Run Order A B C D Rep. 1 Rep. 2 Rep. 3 Yield 

1 0 0 0 0 26 33 29 88 

5 0 0 1 1 27 30 26 83 

9 0 0 2 2 15 19 21 55 

11 0 1 0 1 28 32 31 91 

15 0 1 1 2 24 22 27 73 

16 0 1 2 0 28 20 22 70 

21 0 2 0 2 29 31 21 91 

22 0 2 1 0 29 31 29 89 

26 0 2 2 1 28 24 27 79 

29 1 0 0 1 34 34 34 102 

31 1 0 1 2 33 32 23 88 

34 1 0 2 0 31 29 29 89 

39 1 1 0 2 34 34 34 102 

40 1 1 1 0 34 33 33 100 

44 1 1 2 1 33 32 32 97 

46 1 2 0 0 32 35 33 100 

50 1 2 1 1 34 35 25 94 

54 1 2 2 2 25 28 28 81 
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Run Order A B C D Rep. 1 Rep. 2 Rep. 3 Yield 

57 2 0 0 2 36 34 31 101 

58 2 0 1 0 35 35 35 105 

62 2 0 2 1 34 36 33 103 

64 2 1 0 0 36 35 35 106 

68 2 1 1 1 35 24 36 95 

72 2 1 2 2 31 31 32 94 

74 2 2 0 1 36 34 34 104 

78 2 2 1 2 35 36 34 105 

79 2 2 2 0 35 35 35 105 

Replication     837 834 819  

Total        2490 

3.2. Preliminary analysis of the data 

Correction factor (𝐶𝐹) =
𝑦.….
2

𝑎𝑏𝑐𝑛
=

(2490)2

(3×3×3×3)
= 76544.44 

𝑆𝑆𝑇𝑜𝑡𝑎𝑙 =∑∑∑∑𝑦𝑖𝑗𝑘𝑙
2

𝑛

𝑙=1

𝑐

𝑘=1

𝑏

𝑗=1

𝑎

𝑖=1

− 𝐶𝐹 = 262 + 272 + 152 +⋯+ 352 − 76544.44 = 78266 − 76544.44 = 1721.56  

𝑆𝑆𝑅𝑒𝑝. =
𝑅1
2 + 𝑅2

2 + 𝑅3
2

𝑎𝑏𝑐
− 𝐶𝐹 =

8372 + 8342 + 8192

27
− 76544.44 = 6.8933 

𝑆𝑆𝑇𝑟𝑡. =
∑ ∑ ∑ 𝑦𝑖𝑗𝑘

𝑐
𝑘=1

𝑏
𝑗=1

𝑎
𝑖=1

𝑛
− 𝐶𝐹 =

882 + 832 +⋯+ 1052

3
− 76544.44 = 1351.56 

𝑆𝑆𝐸 = 𝑆𝑆𝑇𝑜𝑡. − 𝑆𝑆𝑅𝑒𝑝. − 𝑆𝑆𝑇𝑟𝑡. = 1721.56 − 6.8933 − 1351.56 = 363.1067 

TABLE 5 Preliminary Analysis of Variance Table 

Source of 

Variation 

Degree of 

Freedom 

Sum of Squares Mean Square Computed F-

Ratio 

Tabular F-Ratio 

Replication 2 6.8933 3.4467 0.7119 3.15 

Treatment 3 1351.56 450.52 93.0557* 3.15 

Error 75 363.1067 4.8414   

Total 80 1721.56    
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The above data was analyzed with the help of MINITAB 18 and the analysis of variance table is displayed below: 

General Factorial Regression: YIELD versus A, B, C, D 

The following terms cannot be estimated and were removed: 

B*C, B*D, C*D 

                 Factor Information 

                  

 

 

 

 

 

 

Analysis of Variance 

Source DF Adj SS Adj MS F-Value P-Value 

Model 20 1335.85 66.793 10.39 0.000 

Linear 8 1106.07 138.259 21.51 0.000 

A 2 762.74 381.370 59.33 0.000 

B 2 21.63 10.815 1.68 0.195 

C 2 232.52 116.259 18.09 0.000 

D 2 89.19 44.593 6.94 0.002 

2-Way Interactions 12 229.78 19.148 2.98 0.003 

A*B 4 102.52 25.630 3.99 0.006 

A*C 4 95.85 23.963 3.73 0.009 

A*D 4 31.41 7.852 1.22 0.311 

Error 60 385.70 6.428 

  

Lack-of-Fit 6 15.70 2.617 0.38 0.887 

Factor Levels Values 

A 3 0, 1, 2 

B 3 0, 1, 2 

C 3 0, 1, 2 

D 3 0, 1, 2 
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Source DF Adj SS Adj MS F-Value P-Value 

Pure Error 54 370.00 6.852 

  

Total 80 1721.56 

   

                   Model Summary 

S R-sq R-sq(adj) R-sq(pred) 

2.53543 77.60% 70.13% 59.17% 

                   Regression Equation 

YIELD = 30.741 - 4.111 A_0 + 0.852 A_1 + 3.259 A_2 - 0.593 B_0 - 0.074 B_1 + 0.667 B_2 

+ 2.037 C_0 + 0.074 C_1 - 2.111 C_2 + 0.815 D_0 + 0.667 D_1 - 1.481 D_2 - 0.926 A*B_0 

0 - 0.556 A*B_0 1 + 1.481 A*B_0 2 + 0.000 A*B_1 0 + 1.704 A*B_1 1 - 1.704 A*B_1 2 

+ 0.926 A*B_2 0 - 1.148 A*B_2 1 + 0.222 A*B_2 2 + 1.333 A*C_0 0 + 0.519 A*C_0 1 

- 1.852 A*C_0 2 + 0.148 A*C_1 0 - 0.333 A*C_1 1 + 0.185 A*C_1 2 - 1.481 A*C_2 0 

- 0.185 A*C_2 1 + 1.667 A*C_2 2 - 0.000 A*D_0 0 + 0.815 A*D_0 1 - 0.815 A*D_0 2 

- 0.296 A*D_1 0 + 0.296 A*D_1 1 - 0.000 A*D_1 2 + 0.296 A*D_2 0 - 1.111 A*D_2 1 

+ 0.815 A*D_2 2 

                   Fits and Diagnostics for Unusual Observations 

Obs YIELD Fit Resid Std Resid  

6 28.00 22.85 5.15 2.36 R 

50 24.00 32.22 -8.22 -3.77 R 

65 23.00 29.26 -6.26 -2.87 R 

71 25.00 31.26 -6.26 -2.87 R 

          R  Large residual 

The same analysis when performed or run in R gave the following results: 
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3.3 Discussion of findings 

Factorial experiments are experiments in which main effects and interactions are studied simultaneously. Factorial design 

is one in which every possible combination of treatment levels for different factors are considered. Therefore, as the number 

of factors increases, the treatment combination and or interaction also increases rapidly, and this may be expensive, difficult 

or sometimes impossible to estimate all the parameters or all the treatment combinations. To keep experimental costs in 

line, one possible approach is to use fractional factorial designs where one does not take measurements upon every possible 

combination of factor-levels, but only on a chosen few without losing much information. These few are selected to ensure 

that the main effects and lower-order interactions can be estimated and tested at the expense of higher-order interactions. 

For these reasons, we confounded a 34−1 fractional factorial design on Carica Papaya (pawpaw) via different fertilizer 

combinations of phosphorus (A), Nitrogen (B), Potassium (C) and Manganese (D), where the number of treatment 

combination was reduced from 81 to 27 by running a fraction of the complete factorial experiment. 
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A major characteristic of a fractional design is its resolution – the degree to which main effects and interactions are 

independently estimated and interpreted [15]. The resolution of a design is determined from the alias structure, and our 

alias structure indicated that main effects are confounded with three factor interactions, while two factor interactions are 

confounded with each other. This is a clear definition of Resolution IV designs; hence, the design used is a 3𝐼𝑉
4−1 fractional 

factorial design. 

From the preliminary analysis, the critical value 𝐹0.05,3,75 = 3.15, compared with the calculated values showed that the 

treatments are significant, but in order to determine which of these treatments (fertilizers) was more important necessitated 

a formal analysis of the data using Minitab 18 and R statistical software. 

The main effects plot suggested that Nitrogen (A) was the most significant, followed by Potassium (C), Phosphorus (B) 

and Manganese (D). The interaction plots also showed that there may be some interactions, since the lines were not parallel. 

From the formal analysis in Minitab, the analysis of variance table showed that Nitrogen (A), Potassium (C), Manganese 

(D), and the interactions: Nitrogen and Phosphorus (AB), and Nitrogen and Potassium (AC), were significant, while other 

factors (main and interaction effects) were not significant. Moreover. The Pareto chart showed the significance of each 

factor on the response (yield) of crop. The red line denoted alpha (𝛼) set at 0.05 (equivalent to 95% confidence). If a bar 

crosses the red line, the corresponding effect was said to be significant. Thus, factors A, C, D and interactions AD and AC 

were deemed significant. This was produced with the help of Minitab 18 statistical software. 

4. CONCLUSION 

Creating large number of treatment combinations is not only complex and cost intensive, it also has a higher-order 

interactions which most times fail to be significant, and often prove difficult to interpret because many factors are taken 

into consideration. Even if they are significant, they explain only small portions of variance. For this reason, we 

recommended the use of fractional factorial design on crop yield using different fertilizer combinations, in which case 

responses are driven by a limited number of main effects and lower order interactions. We also recommended the proper 

application of these fertilizer combinations in their right proportion, in order to enhance good yield and production of food 

to the teeming population in Nigeria. Moreover, we believe that the data layout, estimation and derivation of model 

parameters for 34 design will be useful to students, as well as scholars in design and analysis of experiments. 
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