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ABSTRACT 

This work demonstrates a generative simulation framework that could be scaled to address the constraints of machine learning research 

without real-world data available. A large portion of the experiment was geared toward estimating the ability of synthetic data to 

reproduce the statistical properties of and predictive performance of models trained on natural data. The framework was used to 

preprocess high-level validation strategies and probability-based simulations, as well as pipelines. Different statistical packages were 

used to train and test logistic regression, decision trees and random forest models. The metrics of performance evaluation were accuracy, 

precision, recall, F1-score and AUC, paired t-tests and chi-square tests were used to assess the statistical reliability. The synthetic data 

and the 100 000 records were realistic as far as its feature distributions were close to the real world. The default random forests had the 

best performance (0.91 accuracy) followed by other models. The findings of comparative analysis with real datasets which did not 

demonstrate statistically significant differences were used to establish external validity.  Moreover, during the scalability testing, there 

was no major difference in accuracy of the framework depending on the dataset size. This set of results indicates that generative 

simulations can be an effective and powerful alternative to real data to create machine learning applications. 

Keywords: Generative simulation, synthetic data, machine learning, statistical validation, scalability 
1. Introduction 

Large, high-quality datasets have gained significance as the usage of machine learning applications has been growing 

rapidly. In reality, however, privacy, cost and accessibility are often barriers to these types of data accumulation initiatives, 

especially with regards to sensitive issues such as health care, finances and autonomous systems (Umesh et al., 2025; van 

Breugel et al., 2024). These constraints pose radical bottlenecks to scalable artificial intelligence, and there are alternative 

ways of driving data and video training models.  Recent developments in generative artificial intelligence have put synthetic 

data in a position to be an effective solution to these challenges. In addition to being less susceptible to risks associated 

with ethics and privacy, synthetic datasets are also used to perform rapid prototyping and scale experiments (Goyal and 

Mahmoud, 2024; Singh, 2025). We believe that the recent appearance of a new type of generative model multi-moderative 

surveys heralds the emerging capacity to simulate natural and complex real-world phenomena, thereby alleviating both the 

bottleneck of sparse data and the sometimes stringent requirements of modern AI (Hu et al., 2025). Synthetic data 

capabilities have also been extended through the combination of a digital twin technology and a generative simulation 

framework. Digital twins enable two-way feedback and reconfigurability of state-of-the-art modeling systems situated in 

places subject to dynamically changing data (Peterson and Rajuroy, 2025; Li et al. 2025). In the simulation studies, we 

have shown that the generative approach can also be applied to augment the development cycles and resilience of both 

high-stakes systems (such as autonomous vehicles in the digitalization drive) and systems in industry (like the Xu, De Melo 

et al. 2022 papers). In spite of these developments there is limited systematic assessment of generative frameworks. Many 
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of these studies focus on relatively small scale applications and do not address the question of whether they are statistically 

valid and can be applied to large volumes of data (Balog and Zhai, 2025). This work will help to address this knowledge 

gap by proposing a systematic generative simulator, as well as illustrate its applicability through comparison-based analysis 

and significance tests. By doing this it helps support a next generation of scalable and dependable AI systems without being 

limited by the reality of data. 

1.1 Literature Review 

Generative artificial intelligence has become an enabling technology in generating synthetic data that can be used in 

developing scalable systems in various fields. Surveys have also shown that generative AI methodologies are broad in 

nature and are highly valuable in the context of insufficient and low-quality data (Guo and Chen 2024; Lu et al. 2023). 

Some articles emphasize that not only can generative AI generate statistically plausible datasets, but it can also speed up 

the pace of innovation in domains where information is extremely limited, including in clinical and biomedical studies (van 

Breugel et al., 2024; Umesh et al., 2025). 

Generative simulation applications have been reported in a wide range of domains. Data Falsification is already being used 

in supply chain management sector to make its operations efficient and predictable (Grover et al 2024). Similarly, there 

are a few models of generative testing within the scope of software testing that imitates the actions of users to improve 

reliability and robustness (Islam et al. 2024). Generative AI has also been associated with operations excellence and scale 

in the high-tech manufacturing and service industries (Keskar 2024); (Komaragiri 2024). A small body of literature has 

used synthetic datasets to accelerate discovery in molecular design and biomedical imaging by discarding costly 

measurements taken in the real world (Du et al., 2024; Gao et al., 2023). 

Combinations of generative techniques with simulation setups has been an increasing trend as well. However, generative 

AI can be expected to extend the frontiers of autonomy and decision-making to broader areas (as seen for instance in the 

development of interactive simulators and reinforcement learning-based digital twins). Moreover, the coming of age of the 

scalable generative research platform marks the start of the transformation to the mass implementation, that is concurrently 

efficient and flexible (Zheng et al., 2025; Madaan et al., 2024). 

In general, existing studies confirm high potential of generative simulations but also demonstrate absence of coherent 

frameworks evaluating scalability, statistical testing, and cross-domain relevance in a systematic way. This paper aims at 

closing that gap by postulating a statistical-based integrative generative simulation model. 

1.2 Research Gap 

Machine learning has grown quickly, but it is still challenged by its reliance on large, quality, real-world data. Lack of data, 

privacy and domain constraints do not allow uniform progress. Current literature in the area of synthetic data generation is 

also limited to particular applications or not rigorously tested on real data. Moreover, scale (i.e., the number of datasets) 

and computational efficiency have rarely been considered in a systematic way. This paper seeks to crossing bridges between 

these two issues with the goal to develop a generic generative simulation framework that is versatile enough to produce 

statistically correct information and that, at the same time, is scalable and amenable for comparative and statistical tests. 

1.3 Conceptual Framework 

The proposed framework is able to combine generative simulation, preprocessing, training model, comparative evaluation, 

and scalability assessment into a unified framework. The individual components are designed to test the broad hypothesis 

that synthetic data can be used to replace real world data in machine learning applications without negatively affecting 

statistical validity or model performance (Figure 1.1). 
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Figure 1.1: Conceptual Model 

1.4 Hypothesis 

H1: Data synthesized using the framework will have similar distributions as real data. 

H2: Predictive performance of models trained using synthetic data will be similar to predictive performance of models 

trained using real data. 

H3: There will be no statistically significant evidence of the presence of a meaningful difference between the results of the 

synthetic and the real dataset. 

H4: The framework will be of sufficiently moderate strength in accuracy and efficiency to expand in size data sets. 
2. Methods 

The study relied on a generative simulation model that was explicitly designed to address the lack of large scale real world 

data. The infrastructure is designed to produce synthetic data that roughly mimics the statistical distribution of real world 

features, selected in a representative fashion while not constrained by data collection restrictions. Simulation data were 

determined using prescribed probability distributions and domain priors, and parameterized so as to make them realistic. 

All simulated generative work was done using R software (version 4.3.1) and add-on statistical packages specially designed 

to do advanced simulations. The reason behind selecting this approach is that generative models allow one to generate 

controlled but scalable data with no privacy or access restrictions. 

The artificial data generation pipeline was adopted to generate balanced datasets on the various feature dimensions. In 

datasets (100,000 simulated records) categorically and continuous variables were generated. This sampling method was 

chosen to achieve diversity and an adequate sample size to do machine learning analysis. The use of Gaussian mixture 

modeling and the random sampling of feature values in Monte Carlo simulations introduced a non-linear complexity of the 

data sets. 

After that, further feature engineering and refining further followed. This included normalizing the continuous features as 

well as one-hot encoding the categorical features. The exploratory work has been done in SPSS Statistics (version 29.0) 
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because it enables the organized treatment of categorical encodings and scaling processes. The level was chosen to 

minimize feature bias but also to improve inter-model agreement between the different algorithms. 

Then, the paper continued the training and validation of the model, using three diverse machine learning algorithms, 

including logistic regression, decision trees, and random forests. The analysis was trained on 80 percent of the generated 

dataset and the remaining 20 percent was used as validation. In order to reduce the overfitting and using five-fold cross-

validation strategy, to test the generalization of the model. The reason why this approach has been adopted is that cross-

validation provides a rigorous means of assessing cross-performance consistency of the various partitions of data. 

Comparative baseline analysis was also performed where the results of the models used to generate the series were tested 

against publicly available small-scale real datasets. The comparison also enabled the consideration of how much simulated 

data can imitate a real world performance. And this was necessary to show the external validity of the framework. 

The performance evaluation measures were accuracy, precision, recall, F1-score and the area under ROC curve (AUC). 

Some computation of cyclic comparisons was done through SPSS built-in modules to standardize the results. This 

technique has been chosen because it offers a multimedia evaluation of classification performance. 

To confirm the strength of research findings, paired t-tests and chi-square tests were conducted as a form of statistical 

significance testing, based on the type of variable.  The purpose of these statistical tests was to test how the model did on 

both the generative and real datasets to ensure that the differences observed were not random. 

Finally, a test of scalability and computational efficiency was carried out, increasing the size of the data sets step by step 

(10k, 50k and 100k records) and recording the required time to train the models and the memory. This test was needed to 

enable the generative structure to scale correctly to nonlaboratory AI applications. 
3. Results 

The adoption of the generative simulation model effectively created a scalable methodology to generate synthetic data. 

Figure 1.2 demonstrates the workflow of the framework and reveals the main elements between the data simulation and 

statistical validation. The resulting structure design enabled reproducibility as well as compatibility with actual structural 

data. 

Figure 1.2: Workflow of Generative Simulation Framework 

One such synthesis pipeline that produces a dataset of 100,000 simulated records (comprised of both categorical and 

continuous features) is called data generation pipeline. A summary of the generated dataset characteristics, including equal 

class distributions and realistic feature ranges is shown in table 1. To substantiate this, Figure 2 shows the comparison 

between the distribution of selected continuous features on a versus real-world data where the synthetic features were found 

to be very close to the desired statistical distributions. 

Table 1: Summary of Synthetic Data Characteristics 

Feature Type Range/Levels Mean (SD) / % Distribution 
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Age Continuous 18–75 42.3 (12.4) 

Gender Categorical Male/Female 49.8% / 50.2% 

Education Level Categorical High School, Bachelor, Master, PhD 24%, 38%, 27%, 11% 

Income (USD) Continuous 20,000–120,000 54,300 (18,750) 

Health Status Categorical Poor, Fair, Good, Excellent 12%, 22%, 39%, 27% 

 

 

Figure 2: Distribution of Synthetic Features Compared to Real Datasets 

Algorithms performed well when their models were trained on the synthetic datasets. According to Table 2, logistic 

regression, decision trees and random forests have an accuracy equal to 0.82, 0.86 and 0.91 respectively. The findings in 

these cases demonstrated that repeatability and generalizability of performance could be achieved with simulated-data 

models. Figure 3 further visualizes the relative performance across models and illustrates distributions of accuracy, 

precision, recall, F1 and AUC. 

Table 2: Model Training Performance Across Generative Datasets 

Model Accuracy Precision Recall F1-Score AUC 

Logistic Regression 0.82 0.79 0.80 0.79 0.85 

Decision Tree 0.86 0.84 0.83 0.83 0.87 

Random Forest 0.91 0.90 0.89 0.89 0.93 
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Figure 3: Performance Evaluation Metrics Across Models 

In order to benchmark the framework, small scale real data outcomes were compared to the real results. Each of the 

synthetic data models showed similar levels or greater performance than their real data equivalents in all metrics, as shown 

in Table 3. This is the consistency that validates simulated data sets. Figure 3 illustrates the association between actual and 

artificial results and the distinction between the two data sources were insignificant. 

Table 3: Comparative Baseline Analysis with Real vs. Synthetic Data 

Model Accuracy (Real) Accuracy (Synthetic) F1-Score (Real) F1-Score (Synthetic) 

Logistic Regression 0.80 0.82 0.77 0.79 

Decision Tree 0.83 0.86 0.81 0.83 

Random Forest 0.88 0.91 0.86 0.89 

To ensure that the differences were not by chance, tests of statistical significance were conducted. As demonstrated in 

Table 4, it was found that there were no significant differences (p > 0.05) between models trained on synthetic and real 

data. These results justify the strength of the generative framework. 
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Table 4: Statistical Significance Testing of Model Accuracy 

Comparison Test Used Test Statistic p-value Result 

Logistic Regression (Real vs Synthetic) Paired t-test t = 1.34 0.19 Not Significant 

Decision Tree (Real vs Synthetic) Paired t-test t = 1.08 0.27 Not Significant 

Random Forest (Real vs Synthetic) Chi-square χ² = 2.15 0.14 Not Significant 

Last of all, the scale and computational efficiency test showed that training time was increasing linearly with increasing 

dataset size between 10,000 and 100,000 records, but the accuracy did not change. Figure 4 shows that this is a relationship 

and that the huge amount of data present in any facility can be handled by the framework without the model functionality 

suffering. 

 

Figure 4: Scalability and Computational Efficiency Trends 

Simulation generated datasets were used to create a solid foundation where machine learning can be trained. The resulting 

age, gender, and education level proportionality in the aspects distribution are also reasonable (see Table 1), suggesting 

that the model can replicate the organization of the real-world data. Further evidence that the generative pipeline generated 

statistically plausible datasets is given by the correspondence between synthetic and real distributions, which can also be 

seen in Figure 2. 

The use of synthetic data in machine learning was proved by the results of the training. Table 2 shows that the accuracy of 

random forests is always higher than that of the logistic regression and the decision trees (0.91 vs. 0.82 and 0.86). Figure 
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3 depicts this trend as grouped bars demonstrate the superiority of the ensemble-based methods by all metrics. Interestingly, 

these results are not in conflict with the results of the real-world datasets that states that the framework has no impact on 

performance fidelity. 

Comparing them directly to those models trained on actual data, as outlined in Table 3, synthetic data models had almost 

the same results. The results in Table 4 indicated that the differences were small, and therefore were not statistically 

significant. Non-significant differences (p > 0.05 in all tests) indicate that generative simulation could be a valid surrogate 

to real data in most experimental settings. 

Lastly, the scalability of the framework was established by confirming Figure 4 that demonstrates that, although the training 

time is now proportionate to dataset size, the model accuracy does not decrease. It means that scaling up the generative 

pipeline to operate with large datasets does not introduce performance instabilities. 

Together, this analysis shows that the framework can be used not only to reproduce the statistical accuracy of real-world 

data but also to train models in a way that is both scalable, efficient, and accurate. A combination of synthetic data realism 

(Figure 2, Table 1), good training results (Table 2, Figure 3), external validity (Table 3, Table 4), and scalability efficiency 

(Figure 4) give a complete demonstration of the usefulness of this generative simulation technique. 
4. Conclusion 

 As demonstrated in this paper, a generative simulation framework could be useful, as an alternative to real world data, in 

machine learning experiments. Since it provided statistically plausible fake data and corroborated its findings with actual 

norms, this framework showed that fake data could underpin estimates and all-encompassing inferences of data using 

simulation. Random forests were most predictive, but all the models performed similarly on synthetic data as they 

performed on real data. It demonstrates that the three hypotheses: that the behavior of real-world systems can be simulated 

by generative approaches, that scale cost-effectively to higher datasets; and that performance can be relied upon, are indeed 

correct. 

 Regardless of whether it was successful or not, the study has limitations. They generated the data process, according to 

their programmed distributions, previous experience, and is created according to simulation data, and it is not always the 

manner in which real data would be. Additionally, three popular machine learning models were tested, which can also 

consider a less complex architecture, such as deep neural networks. The results of the computational efficiency analysis 

under the simulated conditions may not be applicable to the situations in the industrial world, in which real data is either 

of low cardinality, or is sensitive, such as in medical applications, economics, and military. Simulable simulations provide 

a privacy-friendly and smaller-sized alternative to generic research data, and could democratise machine learning by 

making the entry barrier more affordable. It takes more work to bring the data closer to reality in the sphere of applying 

more advanced generative models like adversarial models, diffusion models, etc. A further generalisation of the framework, 

which relied on generalisation of the underlying deep-learning models and on the potential range of the applications 

themselves, would also be cumulative. Unlike, scalability component should actually be used to large distributed system 

to determine its industrial feasibility. 
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