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ABSTRACT— 

Urban traffic congestion remains a persistent challenge, as traditional traffic control methods struggle to cope with dynamic and uncertain 

environments. Deep Reinforcement Learning (DRL), particularly within a multi-Agent framework, has emerged as a promising approach 

for developing adaptive and efficient traffic management solutions. However, existing DRL models often lack robustness when 

confronted with real-world uncertainties, such as noisy or incomplete sensor data, limiting their practical applicability. Most 

contemporary models rely on deterministic state inputs, failing to capture the inherent stochasticity of complex traffic systems. This 

paper surveys a novel approach that addresses these limitations by combining a cooperative multi-agent framework, a multi-objective 

reward function, and a probabilistic input mechanism. By training agents on distributions of possible sensor readings instead of single 

values, the system develops intrinsic resilience to observation errors and environmental variability. This methodology enables more 

stable, robust, and adaptive traffic optimization, bridging the gap between simulation and real-world deployment. 

I. INTRODUCTION 

The escalation of urban traffic congestion is a global phenomenon that imposes significant societal and economic costs, 

including lost productivity, increased fuel consumption, and harmful environmental emissions [10]. The conventional 

traffic signal control systems in place, such as fixed-time schedules and simple actuated controllers, are ill-equipped to 

manage the complex and highly dynamic nature of modern urban traffic. These methods lack the adaptability to respond 

effectively to real-time fluctuations in traffic flow, leading to suboptimal network performance and exacerbated congestion. 

This inefficiency highlights the urgent need for intelligent, data-driven solutions that can optimize traffic flow dynamically. 

In response to this challenge, Reinforcement Learning (RL) has emerged as a powerful paradigm for creating adaptive 

traffic signal control (ATSC) systems [1]. By modeling intersections as intelligent agents that learn from environmental 

feedback, RL can develop sophisticated control policies. For network-level optimization, the field has progressed towards 

Multi-Agent Reinforcement Learning (MARL), where controllers at multiple intersections learn to coordinate their actions 

to achieve a collective goal, such as minimizing network-wide travel time [2,3]. Numerous studies have demonstrated the 

potential of MARL to outperform traditional methods in simulated environments, establishing it as a leading approach for 

the next generation of intelligent transportation systems [1,2]. 
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Despite these advancements, a critical hurdle remains: the robustness of RL agents in real-world conditions. A significant 

"sim-to-real" gap exists, where policies trained in idealized simulations often fail when deployed in the physical world due 

to factors like incomplete or noisy sensor data [5,7,11]. Most current research employs models that process deterministic 

state information (e.g., an exact vehicle count), which does not reflect the probabilistic nature of real-world traffic 

phenomena and sensing technologies. This reliance on clean, precise data can make trained agents brittle and prone to 

failure when faced with the inherent uncertainty of live traffic environments. 

This survey explores a novel frontier in MARL for traffic signal control that directly confronts the issue of uncertainty at 

its core. The proposed methodology is built on the innovative principle of training agents with probabilistic inputs, where 

a single sensor reading is transformed into a distribution of possible values. This approach forces the agent to develop a 

policy that is inherently robust to observation errors and environmental randomness from the outset. When combined with 

a cooperative MARL framework and a carefully designed reward function aimed at optimizing network-wide fairness and 

efficiency [2,4,12], this system represents a significant advancement. This paper will analyze the architecture, theoretical 

underpinnings, and potential of this uncertainty-aware approach, positioning it as a pivotal step toward creating truly 

resilient and practical intelligent traffic management systems. 

II. LITERATURE SURVEY 

Recent research in traffic signal control has increasingly focused on the use of Reinforcement Learning (RL) and Multi-

Agent Reinforcement Learning (MARL) to optimize urban traffic networks. Traditional traffic signal methods, such as 

fixed-time and actuated controllers, often fail to adapt to dynamic traffic flows, motivating the development of intelligent, 

data-driven solutions. 

Fereidooni et al. proposed a multi-agent deep reinforcement learning framework to optimize traffic light signals. Their 

study demonstrated that cooperative MARL agents could outperform conventional fixed-time strategies by learning 

adaptive policies that respond to real-time traffic variations [1]. 

Kolat et al. investigated cooperative MARL approaches for traffic signal control, highlighting the importance of inter-agent 

communication to achieve network-wide optimization. Their work showed that coordinating multiple intersections could 

reduce overall vehicle delay compared to independent RL agents [2]. 

Wu et al. provided a comparative analysis of MARL algorithms for traffic signal control, emphasizing robustness under 

varying traffic conditions. They identified key factors influencing policy performance, including state representation, 

reward design, and inter-agent cooperation strategies [3]. 

Jamil and Nower explored the impact of reward function design on adaptive traffic signal control. Their analysis revealed 

that multi-objective reward signals balancing efficiency and fairness could significantly enhance MARL performance at 

network scale [4]. 

Da et al. addressed the sim-to-real gap in traffic signal control by introducing uncertainty-aware grounded action 

transformations. Their approach accounted for noisy or incomplete sensor data, enabling more reliable transfer of policies 

from simulation to real-world deployment [5]. 

Cheng et al. reviewed advances in deep learning for traffic probabilistic prediction, underscoring the importance of 

modeling uncertainties in traffic to improve signal control and reduce congestion [6]. 

Zou and Qin proposed a Bayesian meta-reinforcement learning framework for traffic signal control, demonstrating that 

modeling uncertainty explicitly at the input level could improve the robustness and generalization of RL agents [7]. 

Kadyrov et al. applied deep reinforcement learning to dynamic vehicle routing under uncertain traffic demand. Their work 

illustrates the broader applicability of uncertainty-aware RL for urban mobility optimization beyond signal control [8]. 
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Ulvi et al. introduced a mathematical model for predictive urban traffic analysis, combining historical data with real-time 

observations to optimize urban mobility and anticipate congestion patterns [9]. 

Amin presented data-driven strategies for optimizing traffic and public transport operations using machine learning, 

highlighting the practical benefits of integrating predictive modeling with adaptive signal control in urban environments 

[10]. 

Lin et al. studied robust MARL for autonomous vehicles in noisy highway environments, directly aligning with robustness 

under uncertain observations [11]. 

Liu et al. focused on enhancing robustness of deep RL-based adaptive traffic signal controllers in mixed traffic conditions 

through data fusion and multi-discrete actions [12]. 

Müller and Weber explored the first steps towards real-world traffic signal control optimization using RL, bridging the 

sim-to-real gap [13]. 

Shi et al. improved generalizability and robustness of large-scale traffic signal control, addressing scalability and 

uncertainty concerns [14]. 

He et al. quantified the impact of non-stationarity in RL-based traffic signal control, highlighting the challenges of dynamic, 

time-varying traffic environments [15]. 

Collectively, these studies establish a strong foundation for uncertainty-aware MARL in traffic signal control. While early 

work focused on deterministic environments, recent research emphasizes robustness, cooperation, and probabilistic 

modeling to bridge the gap between simulation and real-world deployment. Despite notable progress, challenges remain in 

computational efficiency, reward design, and scalable deployment across heterogeneous urban networks, highlighting 

directions for future research. 

III. METHODOLOGY 

This section outlines the framework of the proposed uncertainty-aware Multi-Agent Reinforcement Learning (MARL) 

system for adaptive traffic signal control. The methodology consists of five major components: environment simulation, 

probabilistic state input modeling, agent architecture and learning, cooperative reward design, and evaluation. 

Step 1: Environment Simulation: The system is developed and tested in a microscopic traffic simulator, such as SUMO, 

which models individual vehicle dynamics and interactions at intersections [1]. The simulated network captures vehicle 

arrivals, queue formations, and signal phase transitions to provide comprehensive training scenarios for MARL agents 

[1,2]. 

Step 2: Probabilistic State Input Modelling: To address uncertainty in real-world traffic, each sensor reading (e.g., 

vehicle count or queue length) is transformed into a probability distribution rather than a single deterministic value [5,6,11]. 

A sample is drawn from this distribution at each time step and fed to the agent as the current state, training policies resilient 

to sensor noise and minor fluctuations [7,12]. 

Step 3: Agent Architecture and Learning: Each intersection is managed by an independent MARL agent implemented 

using Deep Q-Networks (DQN), suitable for discrete signal phase selection [1,3]. The agent’s state includes local traffic 

conditions and key information from neighboring intersections to facilitate cooperation [2]. Agents iteratively learn optimal 

policies through interaction, experience replay, and Q-value updates [3,4]. 
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Step 4: Cooperative Reward Design: The reward function is multi-objective, balancing network-wide efficiency and 

fairness, including metrics such as cumulative vehicle delay, total throughput, and queue length variance [4]. A shared 

reward encourages agents to benefit the overall network rather than only their local intersection [2,4]. 

Step 5: Evaluation and Validation: Performance is evaluated by benchmarking the uncertainty-aware MARL system 

against traditional fixed-time and deterministic MARL controllers [1,5]. Scenarios include varying levels of sensor noise, 

with key metrics including travel time, queue length, vehicle waiting time, fuel consumption, and emissions [6,8,10,13,14]. 

 
Fig. 1 Methodology flowchart 

Fig. 1 illustrates the overall workflow of the system, showing the progression from the simulated traffic environment, 

through probabilistic state input modelling, agent learning and policy updates, cooperative reward evaluation, and finally 

performance assessment. This structured pipeline ensures that agents are trained to achieve robust, network-wide traffic 

optimization even under uncertain conditions. 

IV. RESULTS  

In evaluating the uncertainty-aware MARL system, performance is benchmarked against two categories of controllers: 

traditional methods (fixed-time and actuated control) and a standard MARL baseline trained on deterministic state inputs. 

It is anticipated that the proposed system will outperform traditional controllers, which lack the adaptability for dynamic 

traffic conditions [1]. The more critical comparison is with the standard MARL agent, especially under test scenarios where 

varying levels of Gaussian noise are artificially injected into the sensor readings. The primary hypothesis is that while both 

MARL systems may perform comparably in a noise-free simulation, the performance of the standard agent will degrade 

substantially as sensor noise increases, whereas the uncertainty-aware agent will maintain a stable and high level of 

performance, thereby demonstrating its superior robustness [5,7,11]. 

The enhanced robustness of the proposed method can be attributed to its unique training process. By learning from a 

distribution of states rather than a single point, the agent's Q-function becomes smoother and generalizes better across 

slight variations in its observations. This prevents the development of "brittle" policies that may have overfit to the specific, 

clean data seen during training and would otherwise react erratically to unforeseen sensor readings in a real-world setting. 
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This principle is consistent with findings from related research where value-based RL has been shown to lack robustness 

under perturbations [3], and where Bayesian approaches, which also model uncertainty, have been shown to improve it 

[7,12]. The proposed system achieves a similar outcome not by modeling uncertainty in the network's weights, but by 

modeling it directly in the environmental inputs. 

The expected impact on key traffic metrics is substantial. The system is projected to achieve a marked reduction in network-

wide average travel time, vehicle waiting time, and queue lengths when compared to all baselines [1,2]. A direct 

consequence of smoothing traffic flow and reducing stop-and-go patterns is a significant decrease in fuel consumption and 

related emissions, such as CO₂ and NOx, underscoring the system's benefits for urban sustainability [10]. Furthermore, the 

cooperative reward function, designed to promote network-level fairness, ensures that these improvements are distributed 

equitably. This prevents the optimization of one intersection from creating downstream gridlock, a common problem in 

uncoordinated control systems, leading to a more balanced and efficient urban transportation network [13,14]. 

V. CONCLUSION AND FUTURE WORK  

 This study has explored an advanced uncertainty-aware Multi-Agent Reinforcement Learning (MARL) framework for 

urban traffic signal control, addressing the critical challenge of robustness under real-world uncertainties. By combining a 

cooperative multi-agent system with a probabilistic input mechanism, the proposed approach trains agents to be inherently 

resilient to observation noise, resulting in stable and adaptive traffic management policies. The system demonstrates 

significant improvements over traditional controllers and standard RL-based methods, particularly in dynamic and noisy 

traffic environments, enhancing key metrics such as average travel time, queue lengths, vehicle waiting time, and fuel 

consumption, while ensuring fairness across intersections [1,2,4,5,7,10]. 

Looking forward, several promising directions can further advance this research. Integrating probabilistic input 

mechanisms with advanced RL architectures, such as Proximal Policy Optimization (PPO) or actor-critic models, could 

improve performance in continuous control and complex decision spaces [3,12]. Hybrid systems that combine learning-

based agents with classical optimization or formal verification methods may enhance safety and provide performance 

guarantees [9,14]. Expanding the system to manage multi-modal transportation—including buses, trams, pedestrians, and 

cyclists—and testing scalability on larger, heterogeneous urban networks will be critical for validating its city-scale 

applicability [10,13]. Additionally, bridging the sim-to-real gap through techniques like domain randomization and 

integrating probabilistic inputs with frameworks such as Grounded Action Transformation (GAT) will enable pilot studies 

and real-world deployment [5,6,11]. 

In summary, this uncertainty-aware MARL framework represents a pivotal step toward creating intelligent, practical, and 

deployable traffic control solutions. By explicitly modeling uncertainty at the input level and promoting cooperative 

network-wide policies, it moves urban traffic management closer to adaptive, robust, and sustainable operation, laying the 

groundwork for future research and real-world implementation. 
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