International Journal of Advance Research Publication and Reviews

International Journal of Advance Research Publication and Reviews
Peer-Reviewed | Multi-Disciplinary Journal

Assessment of Wuchereria Bancrofti in Indoor Resting Mosquitoes in Port Harcourt Local Government Area. Rivers State, Nigeria.

Author

Dimkpa, H. C.; Ebere, N., Orlu, E, E.; & Dimkpa, S.N.

Abstract

Background and Objective: Mosquitoes are known to transmit serious diseases including yellow fever, zika virus, malaria, filariasis, and dengue fever. This study was designed to assess the presence of Wuchereria bancrofti indoor resting mosquitoes present in Port Harcourt Local Government Area, Nigeria.

Material and Methods: A total of 240 structures (screed Mud, Zinc, Block, wood and thatch) were randomly sampled to obtain the indoor resting density across the four (4) study stations (Port Harcourt Township, Marine Base, Diobu and Eagle Island). Indoor resting mosquitoes were collected using pyrethrum spray catch method between 6am – 10am for 12 months Survey (March 2023 to February 2024). The knock down mosquitoes collected were taken to Rivers State University Entomology Laboratory for identification and dissection. Analysis of variance (Anova) and Student t-test was used to test significant difference.

Results: The number of structure (house) patterns varied across stations, the highest was recorded in block 105 (43.75%), followed by zinc 54 (22.5%), wood 45 (18.75%), Screed mud 30 (8.75%), and thatch 9(3.75%). Anova showed significant difference at a P-value of 0.003. Indoor resting density (IRD) of mosquitoes of 7.1 was recorded from six (6) species namely; Culex quiquefasciatus (2.6), Anopheles gambiae s.l (1.6), Culex tigripes 1.0, Culex pipens (0.9), Anopheles funestus (0.6), and Aedes egypti (0.5). Analysis of variance showed significant difference at a P-value of 0.0001. Marine Base had IRD of 7.8, Diobu 7.4, Port Harcourt Township 7.3 and the least IRD was recorded at Eagle Island 5.8. There was no significant difference at a P-value of 0.92. The seasonal variation of indoor resting mosquitoes had the highest collection of mosquitoes in wet season at an IRD of 4.87 and the least collection was recorded at dry season at an IRD of 2.12. Student t-test showed statistically not different at P=0.010547.   The abdominal characteristics of the indoor resting mosquitoes were observed; freshly fed, unfed, Gravid and half gravid d (31.2%, 29.9%, 19.4%, 19.2%) respectively.  Analysis of variance showed significant difference at a P-value of 0.52. The number of mosquitoes dissected was 1,179 (70.0%). Cx. quinquefasciatus 438 (37.2%), An. gambiae s.l 245 (20.8%), Cx. tigripes 179 (15.2%), Cx. pipiens 151(12.8%), An. funestus 95 (8.0%) and Ae. egypti 71(6.0%). Analysis of variance showed significant difference at a P-value of 0.0001. A total of 37 (3.1%) mosquitoes harbored Wuchereria bancrofti. Culex quinquefasciatus 32 (2.7%), and Cx. pipiens 5 (0.4%) respectively. Analysis of variance showed significant difference at a P-value of 0.0001. The highest infection rate was recorded in Diobu 17 (1.4%) and Marine Base 11 (0.9%), followed by Port Harcourt Township 7 (0.5%), and Eagle Island 2 (0.1) respectively. Analysis of variance showed significant difference at a P-value of 0.014.

Conclusion: The lack of good drainage, waste and sewage system contributed to the high rate of mosquitoes in Port Harcourt, so proper and modern drainage system should be erected by the government and environmental sanitation should be enforced on the residents by Rivers State Government in Port Harcourt Local Government Area.


Keywords

Wucherereia bancrofti, Mosquitoes, Indoor resting density, Culex, Anopheles, Aedes, Port Harcourt.

Full Text:

Download Paper PDF

References

1. Gillies, M. T. & De Meillon, B. (1968). The Anophelinae of Africa South of the Sahara      (Ethiopian Zoographical Region). South African Institute of Medical Research Johannesburg. 54, 343.

2. Oduola, A. O. & Awe, O. O. (2006). Behavioural bating preference of culex quinquefaciatus in human host on Lagos metropolis, Nigeria. Journal of Vector Borne Diseases, 43(1), 16 – 20.

3. Grobbelaar, A. A., J. Weyer, N. Moolla, P. Jansen, van Vuren, F. Moises, & Paweska. J. T. (2016). Resurgence of yellow fever in Angola, 2015–2016. Emerging Infectious Disease. 22: 1854–1855.

4. Paules, C. I., & A. S. Fauci. (2017). Yellow fever — Once again on the radar screen in the Americas. New England Journal of Medicine 376: 1397–1399.

5. Amini, M., Hanafi-Bojd, A. A. Aghapour, A. A. & Chavshin, A. R. (2020). “Larval habitats and species diversity of mosquitoes (Diptera: Culicidae) in West Azerbaijan Province, Northwestern Iran,” BMC Ecology, 20 (1), 60.

6. Chan, A., Chiang, L. P. & Hapuarachchi, H. C. (2014). “DNA barcoding: complementing morphological identification of mosquito species in Singapore,” Parasites & Vectors, vol. 7, no. 1.

7. Nwoke, B. E. B., Nwoke, E. A., Ukaga, C. N. & Nwachukwu, M. I. (2010). Epidemiological Characteristics of Bancroftian Filariasis and the Nigerian Environment. Journal of Public Health and Epidemiology, 113 – 117.

8. Anosike, J. C., Onwuliri, C. O. E. and Onwuliri, V. A. (2003). Human filariasis in Dass Local Government Area of Bauchi State, Nigeria, Tropical Ecology, 44(2), 217 – 227.

9. World Health Organizatoin, WHO (2023). Lymphatic filariasis .

10. CDC, Center for Disease and Control (2018). Parasite:  Lymphatic filariasis.

11. Waje T, Iliyasu C, Yaki.L.M, & Aura I. k. (2024). A review of epidemiology of lymphatic filariasis in Nigeria. Pan African Medical Journal. 47.142.39746.

12. Eneanya O, Cano J, Dorigatti I, Anagbogu F, Okoronkwo C, GraskeT, & Donnelly C.A. (2018). Environmental suitability for lymphatic filaraisis in Nigeria. Parasites and Vectors. 10(1186)13071-3097-9.

13. Pam D D, De souza D K, D’Souza S, Opoku M, Sanda S, Nazardden I, Anagbogu F,N, Okoronkwo C, Davies E, Elhassan E, Molyneux D H, Bockarie M, J, & Koudou B.G (2017). Is mass drug administration against lymphatic filariasis required in urban settings? The experience in Kano, Nigeria. PLOS. Neglected Tropical Diseases 11(10)006004. 10.1371.

14. Richards F,O, Emukah E, Gravies P, M, Nkwocha O, Nwukwo L, Rakers L, Mosher A, Patterson A, Ozaki M, Nwoke B E B, Ukaga C, N, Njoku C, Nwodu K, Obasi A & Miri E. S. (2013). Community wide distribution of long lasting insecticidal nets can halt transmission of lymphatic filariasis in Southeastern Nigeria. The American Journal of Tropical Medicine and Hygiene. 89(3):578-587.

15. Nzeako S O, Okunnuga O H, Nduka F O & Ezenwaka C O, (2016). Lymphatic filariasis and malaria awareness amongst residents of Port Harcourt Metropolis. International Journal of Applied Science- Research and Review. 10(21767)2349-7238.

16. World Health Organization, WHO (1975). Manual on practical entomology in malaria. Part II: Methods and techniques. World Health Organization, Geneva.

17. World Health Organization, WHO, (2013). Manual for indoor residual spraying application of residual sprays for vector control. Geneva: World Health Organization.

18. Service, M. W. (1993). Mosquito Ecology: Field sampling methods. Chapman and Hall.99.

19. Gillies, M. T. Coetzee, M. A. (1987). A supplement to the Anophelinae of Africa South of the Sahara. Publications of the South Africa Institute for Medical Research. 55, 1 – 143.

20. William, J. & Pinto, J. (2012). Training manual on vector control management for mosquitoes. Control with special emphasis on malaria vectors. Special Emphasis Publication, 66(1), 1 – 283.

21. Mboera, L. E. G., Magesa, S. & Molteni, F. (2006). Indoors man-biting mosquitoes and their implication on malaria transmission in Mpwa and Iringa Districts, Tanzania. Tanzania Health Research Bulletin, 8(3), 141 – 144.

22. Irikannu, K., Nwalioba, E., Umeanaeto, P., Nzeukwu, C., Aniefuna, C., Obiefule, E., Elosiuba, N. & Uzochukwu, C. (2022). Composition of mosquito species and physiological states of indoor man-Bitting mosquitoes at Nteje-South-Eastern Nigeria. The Bioscientist, 10(1), 113 – 122.

23. Mbah, M., Akpan, S. S., Otubassey, I. B. & Daniel, H. B. (2015). Entomological survey of mosquitoes responsible for the transmission of lymphatic filariasis in Biase, Cross River State, Nigeria. Journal of Medicine Sciences, 1, 1 – 5.

24. Okorie, N. P., Popoola, K. O. K., Olayemi, M. A., Kolade, T. I., George. O. & Ademowo, C. (2014). Species composition and temporal distribution of mosquitos’ populations in Ibadan, south West Nigeria. Journal of Entomology and Zoology Studies, 2(4), 164 – 169.

25. Ebenezer, A., Ben, H. I. B. & Enaregha, E. (2013). Atial distribution and indoor-resting density of mosquito species in the lowland rainforest of Bayelsa State, Nigeria. International Journal of Tropical Medicine, 8(4), 87 – 91.

26. Afolabi, O. J., Simon-Oke, I. A. & Osomo, B. O. (2013). Distribution, abundance and diversity of mosquitoes in Akure, Ondo State, Nigeria. Journal of Parasitology and Vector Biology, 5(10), 32 – 136.

27. Onyido, A. E., Ezeani, A. C., Irikannu, K. C., Umeanto, P. U., Egbuche, C. M., Chikezie, F. M. & Ugha, C. N. (2016). Anthropophilic mosquito species prevalence in Nibo Community, Awka, South, South Local Government, Anambra State. Ewemen Journal of Epidemiology and Clinical Medicine, 2(1), 14 – 20.

28. Umeanaeto, P., Asogwa, A. N., Onyido, A., Irikannu, K. & Ifeanyichukwu, M. O. (2017). The parity rate of indoor-resisting adult female anopheles and culex mosquitoes and their implication in diseases transmission in Nnamdi Azikiwe University Female Hostels, Awka, South-Eastern Nigeria. International Journal of Environment Agriculture and Biotechnology, 2(4), 1551 – 1556.

29. Egbuche, C. M., Onyido, A. E., Umeanaeto, P. U., Nwankwo, E. N., Omah, I. F., Ukonze, C. B., Okeke, J. J., Ezihe, C. K., Irikannu, K. C., Aniekwe, M. I., Ogbodo, J. C. & Enyinnaya, J. O. (2020). Anopheles species composition and some climatic factors that influence their survival and population abundance in Anambra East LGA, Anambra State, Nigeria. Nigerian Journal of Parasitology, 4(2), 240 – 250.

30. Onwuzurike, I. V., Onyebueke, A., Irikannu, K., Nzeukwu, C., Ogbonna, C. U., Nwangwu, R. L. & Ochtaka, C. S. (2021). Relative abundance and diversity of man-biting mosquito species before and after indoor residual spraying programme in Akka and Environms, Anambra State. Nigeria. Trends in Entomology.

31. Okiwelu, S. N. & Noutcha, M. A. E. (2012). Breeding sites of Culex quinquefaciatus during the rainy season in rural lowland rainforest, Rivers State, Nigeria. Public Health Research, 2(4), 64 – 68.

32. Muturi, E., Mwangangi, J., Shilidu, J., Jacob, B. G., Mbogo, C. M., Githuse, J., Novak, R. J. (2008). Environmental factors associated with the distribution of Anopheles arabiensis and Culex quinquefasciatus in Rice agro-ecosystem in Mwea, Kenya. Journal of Vector Ecology, 33(1), 56 – 63.

33. Mutebi, J. P., Crabtree, M. B., Kading, R. C., Powers, A. M., Lutwama, J. J. & Miller, B. R. (2012). Mosquitoes of Western Uganda, Journal of medical Entomology, 49(6), 1289 – 1306.

34. Dimkpa, C. H., Ebere, N. & Ugbomeh, A. P. (2019). Prevalence of mosquitoes harbouring microfilaria in four communities in Andoni, Rivers State. Asia Journal of Biological Science, 12, 851 – 859.

35. Omoregie, A. O., Omoregie, M. E., Adetimehin, A. D. & Aigbodion, F. I., (2019). Species composition of mosquitoes from boarding school dormitories in Benin City, Edo State, Nigeria. Nigeria Annals of pure and Applied Sciences, 2, 25 – 34.

36. Irikannu, K. C., Onyido, A. E., Nwankwo, E. N., Umeameto, P. U., Onwube, O., Ogaraku, J. C., Ezeagwuna, D. A., Onyebueke, A. C. & Okoduwa, A. U. (2020). A survey of man-biting mosquito species in a tropical rainforest community in the Southeastern Nigeria. 38(3), 498 – 506.

37. Bockarie, M. J., Pedersen, E. M., White, G. B. & Michael, E. (2009). Role of vector control in the global program to eliminate lymphatic filariasis. Annual Revolutionary Entomology.54, 469–487.

38. Mullen, G. R. & Durden, L. A. (2019). Medical and veterinary entomology third edition.

39. Mzilahowa, T., Gowelo, S., Chiphwanya, J., Bauleni, A, & Mukaka, M. (2023). Anopheles funestus sensu stricto Giles (Diptera: Culcidae) bites after sunrise at two rural villages in Northern Malawi and its implication for malaria control. Malawi Mediciene Journal. 35(2):80-88.

40. Sinka, M. E., Rubio-Palis, Y. & Manguin, S. (2010). “The dominant Anopheles vectors of human malaria in the Americas: occurrence data, distribution maps and bionomic précis,” Parasites and Vectors, vol. 3, 2010.

41. Aigbodion, F. I. & Odiachi, F. C. (2003). Breeding in Benin City, Nigeria, Nigeria Journal of Entomology, 20, 1 – 7.

42. Oduola, A. O., Adelaya, O. J. & Awolola, S. (2016). Dynamics of Anopheline vector species composition and reported mosquito borne diseases case during rain and dry seasons in two selected communities of Kwara State. Nigerian Journal of Parasitology, 37(2), 157 – 213.

43. Abubakar, A. S., Adeniyi, K. A., Joshua, B. B., Musa, M. D., Abubakar, Z., Jibrin, Mu., Ibrahim, H., Muhammed, A. A. H., Nuradden, A. & Humumaira, A. L. (2023). Abdomenial status and blood meal preference of Anopheles gambiae complexes in some communities of Dutse Local Government Area, Northwestern Nigeria. Dutse Journal of Pure and Applied Sciences, 3, 1 – 18.

44. Adeleke, M. A., Mafiana & C. F., Idowu, A. B., Sam-Wobo, S. O., & Idowu, O. A. (2010). Population dynamics of indoor sampled mosquitoes and their implications in Abeokuta, south-western Nigeria. Journal of Vector Borne Diseases. 47(1), 33–38.

45. Ototo, E., Zhou, N., Githeko, A. K., & Yan, G. (2015). Surveillance of mosquito borne disease vector population density and biting behaviour in Western Kenya. Mosquito Borne Disease Journal, 14(1), 3 – 7.

46. Kasili, S., Oyieke, F., Wamae, E. & Mbago, C. (2009). Seasonal changes of infectivity, rates ofbancroftian filariasis vectors in coast province, Kenya. Journal of Vector Borne Disease, (46), 219 – 224.

47. Service, M. W. (1993). Mosquito ecology: Field sampling methods. 2nd edition, Elsevier publishers, Essex, United Kingdom.

48. World Health Organization, WHO, (2013b). Manual for indoor residual spraying application of residual sprays for vector control. Geneva: World Health Organization.

49. Aliyu, A. A., Sow, G. J. & Ndams, I. S. (2020). Entomological survey of mosquito vectors of lymphatic filariasis in Talatan-mafara and Tsafe Local Government Area of Zamfara State, Nigeria. Journal of Sciences, 4(2), 207 – 216.

50. Kelly Hope, L. A., Molyneux, D. H. & Bockarie, M. J. (2013). Can malaria vector control accelerate the interruption of lymphatic filariasis transmission in Africa. Capturing a window of opportunity? Parasites & Vectors, 3305 – 3639.

51. Amaechi, A. A., Nwoke, B. E. B. & Ukaga, C. N. (2011). A comparative study of human lymphatic filariasis vectors and filarial transmission indices control trial using insecticide treated bednets (ITBN) in Ebonyi State, Nigeria. Global Research Journal of Science, 1, 18 – 23.

52. Amadi, E. C. & Eze, N. C. (2017). An entomological survey and determination of vectoral infection rates for lymphatic filariasis in Ogoniland, Niger Delta, Nigeria. Nigeria Journal of Parasitology, 10, 4324.

53. Anosike, J. C., Nwoke, B. E., Ajayi, E. G., Onwuliro, C. O., Okoo, O. U., Oku, E. E., Asor, J. E., Amajuoyi, O. U., Ikpeama, C. A., Ogbusu, E. I. & Meribe C. O. (2005). By lymphatic filariasis among the Ezza people of Ebonyi state, Eastern Nigeria, Annual Agricultural Environmental and Medicine, 12(2), 181 – 186.

54. Martens, W. J., Niessen, L. W., Rotmans, J., Jetten, T. H. & McMichael, A. J. (1995) Potential impact of global climate change on malaria risk. Environmental health perspectives 103(5), 458–464.

55. Ngenga, S. M., Kanyi, K. M., Mutungi, F. M., Okoyo, C., Matendechero, H. S., Pollan, R. L., Halliday, K. E. Brooker, S. J., Wamae, C. N., Onsongo, J. K. & Won, K. Y. (2017). Assessment of lymphatic filariasis prior to re-starting mass drug administration campaigns in coastal Kenya. Parasite and Vectors, 10(1), 99.


Top